Forecasting Solar Power Generation Utilizing Machine Learning Models in Lubbock

Afshin Balal, Yaser Pakzad Jafarabadi, Ayda Demir, Morris Igene, Michael Giesselmann, Stephen Bayne


Solar energy is a widely accessible, clean, and sustainable energy source. Solar power harvesting in order to generate electricity on smart grids is essential in light of the present global energy crisis. However, the highly variable nature of solar radiation poses unique challenges for accurately predicting solar photovoltaic (PV) power generation. Factors such as cloud cover, atmospheric conditions, and seasonal variations significantly impact the amount of solar energy available for conversion into electricity. Therefore, it is essential to precisely estimate the output of solar power in order to assess the potential of smart grids. This paper presents a study that utilizes various machine learning models to predict solar photovoltaic (PV) power generation in Lubbock, Texas. Mean Squared Error (MSE) and R² metrics are utilized to demonstrate the performance of each model. The results show that the Random Forest Regression (RFR) and Long Short-Term Memory (LSTM) models outperformed the other models, with a MSE of 2.06% and 2.23% and R² values of 0.977 and 0.975, respectively. In addition, RFR and LSTM demonstrate their capability to capture the intricate patterns and complex relationships inherent in solar power generation data. The developed machine learning models can aid solar PV investors in streamlining their processes and improving their planning for the production of solar energy.


Doi: 10.28991/ESJ-2023-07-04-02

Full Text: PDF


Forecasting; Solar Power Generation; Machine Learning Models; Mean Squared Error; R² Metric.


Walmsley, M. R. W., Walmsley, T. G., & Atkins, M. J. (2015). Achieving 33% renewable electricity generation by 2020 in California. Energy, 92, 260–269. doi:10.1016/

Ye, H., Yang, B., Han, Y., & Chen, N. (2022). State-Of-The-Art Solar Energy Forecasting Approaches: Critical Potentials and Challenges. Frontiers in Energy Research, 10, 268. doi:10.3389/fenrg.2022.875790.

Balal, A., Abedi, M., & Shahabi, F. (2021). Optimized generated power of a solar PV system using an intelligent tracking technique. International Journal of Power Electronics and Drive Systems, 12(4), 2580. doi:10.11591/ijpeds.v12.i4.pp2580-2592.

Harsito, C., Triyono, T., & Rovianto, E. (2022). Analysis of heat potential in solar panels for thermoelectric generators using ANSYS software. Civil Engineering Journal, 8(7), 1328-1338. doi:10.28991/CEJ-2022-08-07-02.

Demir, A., Gutierrez, L. F., Namin, A. S., & Bayne, S. (2022). Solar Irradiance Prediction Using Transformer-based Machine Learning Models. 2022 IEEE International Conference on Big Data (Big Data). doi:10.1109/bigdata55660.2022.10020615.

Balal, A., & Giesselmann, M. (2021). Demand Side Management and Economic Analysis Using Battery Storage System (BSS) and Solar Energy. 2021 IEEE 4th International Conference on Power and Energy Applications (ICPEA), Busan, Korea, Republic of. doi:10.1109/icpea52760.2021.9639359.

Solano, E. S., Dehghanian, P., & Affonso, C. M. (2022). Solar Radiation Forecasting Using Machine Learning and Ensemble Feature Selection. Energies, 15(19), 7049. doi:10.3390/en15197049.

Benti, N. E., Chaka, M. D., & Semie, A. G. (2023). Forecasting Renewable Energy Generation with Machine Learning and Deep Learning: Current Advances and Future Prospects. Sustainability (Switzerland), 15(9), 7087. doi:10.3390/su15097087.

Kim, E. G., Akhtar, M. S., & Yang, O. B. (2023). Designing solar power generation output forecasting methods using time series algorithms. Electric Power Systems Research, 216, 109073. doi:10.1016/j.epsr.2022.109073.

Elsaraiti, M., & Merabet, A. (2022). Solar Power Forecasting Using Deep Learning Techniques. IEEE Access, 10, 31692–31698. doi:10.1109/ACCESS.2022.3160484.

Li, P., Zhou, K., Lu, X., & Yang, S. (2020). A hybrid deep learning model for short-term PV power forecasting. Applied Energy, 259, 114216. doi:10.1016/j.apenergy.2019.114216.

Cabezón, L., Ruiz, L. G. B., Criado-Ramón, D., J. Gago, E., & Pegalajar, M. C. (2022). Photovoltaic Energy Production Forecasting through Machine Learning Methods: A Scottish Solar Farm Case Study. Energies, 15(22), 8732. doi:10.3390/en15228732.

Bajpai, A., & Duchon, M. (2019). A Hybrid Approach of Solar Power Forecasting Using Machine Learning. 2019 3rd International Conference on Smart Grid and Smart Cities (ICSGSC). doi:10.1109/icsgsc.2019.00-10.

Sorkun, M. C., Paoli, C., & Incel, Ö. D. (2017). Time series forecasting on solar irradiation using deep learning. 2017 10th international conference on electrical and electronics engineering (ELECO), 30 November-2 December, 2017, Bursa, Turkey.

Miraftabzadeh, S. M., Colombo, C. G., Longo, M., & Foiadelli, F. (2023). A Day-Ahead Photovoltaic Power Prediction via Transfer Learning and Deep Neural Networks. Forecasting, 5(1), 213–228. doi:10.3390/forecast5010012.

Polasek, T., & Čadík, M. (2023). Predicting photovoltaic power production using high-uncertainty weather forecasts. Applied Energy, 339, 120989. doi:10.1016/j.apenergy.2023.120989.

Mystakidis, A., Ntozi, E., Afentoulis, K., Koukaras, P., Gkaidatzis, P., Ioannidis, D., Tjortjis, C., & Tzovaras, D. (2023). Energy generation forecasting: elevating performance with machine and deep learning. Computing, 1–23. doi:10.1007/s00607-023-01164-y.

Zhang, X., Li, Y., Lu, S., Hamann, H. F., Hodge, B. M., & Lehman, B. (2019). A Solar Time Based Analog Ensemble Method for Regional Solar Power Forecasting. IEEE Transactions on Sustainable Energy, 10(1), 268–279. doi:10.1109/TSTE.2018.2832634.

Mantri, V., Sharma, N., & Jayaraman, R. (2022). Solar Power Generation Prediction for Better Energy Efficiency using Machine Learning. 2022 7th International Conference on Communication and Electronics Systems (ICCES), Coimbatore, India. doi:10.1109/icces54183.2022.9835749.

Torres, J. F., Troncoso, A., Koprinska, I., Wang, Z., & Martínez-Álvarez, F. (2019). Deep Learning for Big Data Time Series Forecasting Applied to Solar Power. International Joint Conference SOCO’18-CISIS’18-ICEUTE’18. Advances in Intelligent Systems and Computing, 771, Springer, Cham, Switzerland. doi:10.1007/978-3-319-94120-2_12.

Chaibi, M., Benghoulam, E. M., Tarik, L., Berrada, M., & El Hmaidi, A. (2022). Machine Learning Models Based on Random Forest Feature Selection and Bayesian Optimization for Predicting Daily Global Solar Radiation. International Journal of Renewable Energy Development, 11(1), 309–323. doi:10.14710/IJRED.2022.41451.

Balal, A., & Giesselmann, M. (2022). PV to Vehicle, PV to Grid, Vehicle to Grid, and Grid to Vehicle Micro Grid System Using Level Three Charging Station. 2022 IEEE Green Technologies Conference (GreenTech), Houston, TX, USA. doi:10.1109/greentech52845.2022.9772041.

Zhou, Y., Liu, Y., Wang, D., Liu, X., & Wang, Y. (2021). A review on global solar radiation prediction with machine learning models in a comprehensive perspective. Energy Conversion and Management, 235, 113960. doi:10.1016/j.enconman.2021.113960.

Tang, N., Mao, S., Wang, Y., & Nelms, R. M. (2018). Solar Power Generation Forecasting With a LASSO-Based Approach. IEEE Internet of Things Journal, 5(2), 1090–1099. doi:10.1109/JIOT.2018.2812155.

Qadir, Z., Khan, S. I., Khalaji, E., Munawar, H. S., Al-Turjman, F., Mahmud, M. A. P., Kouzani, A. Z., & Le, K. (2021). Predicting the energy output of hybrid PV–wind renewable energy system using feature selection technique for smart grids. Energy Reports, 7, 8465–8475. doi:10.1016/j.egyr.2021.01.018.

Carrera, B., Sim, M. K., & Jung, J. Y. (2020). PVHybNet: A hybrid framework for predicting photovoltaic power generation using both weather forecast and observation data. IET Renewable Power Generation, 14(12), 2192–2201. doi:10.1049/iet-rpg.2018.6174.

Yagli, G. M., Yang, D., & Srinivasan, D. (2019). Automatic hourly solar forecasting using machine learning models. Renewable and Sustainable Energy Reviews, 105, 487–498. doi:10.1016/j.rser.2019.02.006.

Abdul Karim, S. A., & Mahinder Singh, B. S. (2014). Global solar radiation modeling using polynomial fitting. Applied Mathematical Sciences, 8, 367–378. doi:10.12988/ams.2014.39516.

Rahul, Gupta, A., Bansal, A., & Roy, K. (2021). Solar Energy Prediction using Decision Tree Regressor. 2021 5th International Conference on Intelligent Computing and Control Systems (ICICCS). doi:10.1109/iciccs51141.2021.9432322.

Yadav, A. K., & Chandel, S. S. (2014). Solar radiation prediction using Artificial Neural Network techniques: A review. Renewable and Sustainable Energy Reviews, 33, 772–781. doi:10.1016/j.rser.2013.08.055.

Jalali, S. M. J., Khodayar, M., Ahmadian, S., Shafie-khah, M., Khosravi, A., Islam, S. M. S., Nahavandi, S., & Catalao, J. P. S. (2021). A New Ensemble Reinforcement Learning Strategy for Solar Irradiance Forecasting using Deep Optimized Convolutional Neural Network Models. 2021 International Conference on Smart Energy Systems and Technologies (SEST). doi:10.1109/sest50973.2021.9543462.

Khalyasmaa, A., Eroshenko, S. A., Chakravarthy, T. P., Gasi, V. G., Bollu, S. K. Y., Caire, R., Atluri, S. K. R., & Karrolla, S. (2019). Prediction of Solar Power Generation Based on Random Forest Regressor Model. 2019 International Multi-Conference on Engineering, Computer and Information Sciences (SIBIRCON). doi:10.1109/sibircon48586.2019.8958063.

Tiwari, S., Sabzehgar, R., & Rasouli, M. (2018). Short Term Solar Irradiance Forecast Using Numerical Weather Prediction (NWP) with Gradient Boost Regression. 2018 9th IEEE International Symposium on Power Electronics for Distributed Generation Systems (PEDG). doi:10.1109/pedg.2018.8447751.

Hong, Y. Y., Martinez, J. J. F., & Fajardo, A. C. (2020). Day-Ahead Solar Irradiation Forecasting Utilizing Gramian Angular Field and Convolutional Long Short-Term Memory. IEEE Access, 8, 18741–18753. doi:10.1109/ACCESS.2020.2967900.

Elizabeth Michael, N., Mishra, M., Hasan, S., & Al-Durra, A. (2022). Short-Term Solar Power Predicting Model Based on Multi-Step CNN Stacked LSTM Technique. Energies, 15(6), 2150. doi:10.3390/en15062150.

Jebli, I., Belouadha, F. Z., Kabbaj, M. I., & Tilioua, A. (2021). Prediction of solar energy guided by Pearson correlation using machine learning. Energy, 224, 120109. doi:10.1016/

Full Text: PDF

DOI: 10.28991/ESJ-2023-07-04-02


  • There are currently no refbacks.

Copyright (c) 2023 Afshin Balal, Yaser Pakzad Jafarabadi, Ayda Demir, Igene Morris, Michael Giesselmann, Stephen Bayne