Optimization of the Extrusion Process in the Production of Compound Feeds for Dairy Cows

Rabiga Kassymbek, Auyelbek Iztayev, Tahir Balevi, Urishbay Chomanov, Gulzhan Zhumaliyeva, Assiya Shoman


The paper proposes a way of enriching the composition of mixed fodder by combining two promising technologies with known effects: inclusion of germinated grain in the composition and extrusion. Crude and digestible protein, fiber, fat, and mineral elements Ca, K, Na, and P were studied. Inclusion of sprouted grain into mixed fodder and subsequent extrusion contribute to improvements in taste qualities, increased edibility, and assimilation of mixed fodder, as well as nutritive value. Taking into account the obtained knowledge about the influence of temperature regime and content of germinated triticale grain in mixed fodder production, it is advisable to continue research to adapt the technology and develop formulations for different types of animals and farm birds. The purpose of the study was to optimize the process of extrusion of sprouted triticale grain in order to reduce energy consumption and obtain high-quality extrudates. To achieve this goal, the following tasks were set: to analyze the regime factors affecting the fat content based on the optimization of technological modes of extrusion. To optimize the technology of extrusion of triticale grain of the Kozha variety, the fat content was chosen as the target function. Optimization of the technology of extrusion of triticale grain of the Kozha variety was carried out by the method of nonlinear programming. The following optimal technological modes of grain extrusion were obtained: The content of sprouted triticale grain is 15%, and the extrusion temperature is 140°C. With these optimal grain processing modes, the target function was 1.12%. The practical significance of the technology of the production of compound feeds with the use of extrusion in order to improve the quality and increase the shelf life.


Doi: 10.28991/ESJ-2023-07-05-08

Full Text: PDF


Feeding; Extrusion; Triticale; Germinated Grain; Technology.


Zaitsev, V.V., & Konstantinov, V. A. (2015). Extruded feed in cow feeding. In the collection: agricultural science: search, problems, and solutions. In Materials of the International scientific and Practical conference dedicated to the 90th anniversary of the birth of the Honored Scientist of the Russian Federation, Doctor of Agricultural Sciences, Professor VM Kulikov, 57-61.

Gonzalez-Valadez, M., Munoz-Hernandez, G., & Sanchez-Lopez, R. (2008). Design and evaluation of an extruder to convert crop residues to animal feed. Biosystems Engineering, 100(1), 66–78. doi:10.1016/j.biosystemseng.2008.02.002.

Rahman, M. A. U., Rehman, A., Chuanqi, X., Long, Z. X., Binghai, C., Linbao, J., & Huawei, S. (2015). Extrusion of Feed/Feed Ingredients and Its Effect on Digestibility and Performance of Poultry: A Review. International Journal of Current Microbiology and Applied Sciences, 4(4), 48–61.

Raza, Z., Naz, K., & Ahmad, S. (2022). Expected values of molecular descriptors in random polyphenyl chains. Emerging Science Journal, 6(1), 151-165. doi:10.28991/ESJ-2022-06-01-012.

Zhu, F. (2018). Triticale: Nutritional composition and food uses. Food Chemistry, 241, 468–479. doi:10.1016/j.foodchem. 2017.09.009.

Balandrán-Quintana, R. R., Mendoza-Wilson, A. M., Ramos-Clamont Montfort, G., & Huerta-Ocampo, J. Á. (2019). Plant-Based Proteins. Proteins: Sustainable Source, Processing and Applications, 4, 97–130. doi:10.1016/B978-0-12-816695-6.00004-0.

Müller, A., Wolf, D., & Gutzeit, H. O. (2017). The black soldier fly, Hermetia illucens – a promising source for sustainable production of proteins, lipids and bioactive substances. Zeitschrift Für Naturforschung C, 72(9–10), 351–363. doi:10.1515/znc-2017-0030.

Gregson, C.M., Lee, TC. (2004). Quality Modification of Food by Extrusion Processing. Quality of Fresh and Processed Foods. Advances in Experimental Medicine and Biology, 542, Springer, Boston, United States. doi:10.1007/978-1-4419-9090-7_13.

Pawar, S. G., Pardeshi, I. L., Borkar, P. A., & Rajput, M. R. (2014). Optimization of process parameters of microwave puffed sorghum based ready-to-eat (RTE) food. Journal of Ready to Eat Foods, 1(2), 59-68.

Mesquita, C. de B., Leonel, M., & Mischan, M. M. (2013). Effects of processing on physical properties of extruded snacks with blends of sour cassava starch and flaxseed flour. Food Science and Technology, 33(3), 404–410. doi:10.1590/S0101-20612013005000073.

Alvarenga, I. C., & Aldrich, C. G. (2020). Starch characterization of commercial extruded dry pet foods. Translational Animal Science, 4(2), 1017–1022. doi:10.1093/TAS/TXAA018.

Monti, M., Gibson, M., Loureiro, B. A., Sá, F. C., Putarov, T. C., Villaverde, C., Alavi, S., & Carciofi, A. C. (2016). Influence of dietary fiber on macrostructure and processing traits of extruded dog foods. Animal Feed Science and Technology, 220, 93–102. doi:10.1016/j.anifeedsci.2016.07.009.

Kaur, M., Sandhu, K. S., Ahlawat, R. P., & Sharma, S. (2015). In vitro starch digestibility, pasting and textural properties of mung bean: effect of different processing methods. Journal of Food Science and Technology, 52(3), 1642–1648. doi:10.1007/s13197-013-1136-2.

Santos, I. L., Schmiele, M., Aguiar, J. P. L., Steel, C. J., Silva, E. P., & Souza, F. das C. do A. (2020). Evaluation of extruded corn breakfast cereal enriched with whole peach palm (Bactris Gasipaes, Kunth) flour. Food Science and Technology (Brazil), 40(2), 458–464. doi:10.1590/fst.04019.

Alonso dos Santos, P., Caliari, M., Soares Soares Júnior, M., Soares Silva, K., Fleury Viana, L., Gonçalves Caixeta Garcia, L., & Siqueira de Lima, M. (2019). Use of agricultural by-products in extruded gluten-free breakfast cereals. Food Chemistry, 297, 124956. doi:10.1016/j.foodchem.2019.124956.

Yadav, U., Singh, R. R. B., & Arora, S. (2018). Evaluation of quality changes in nutritionally enriched extruded snacks during storage. Journal of Food Science and Technology, 55(10), 3939–3948. doi:10.1007/s13197-018-3319-3.

Herring, T. C., Thuo, J. N., & Nyomboi, T. (2022). Engineering and Durability Properties of Modified Coconut Shell Concrete. Civil Engineering Journal, 8(2), 362-381. doi:10.28991/CEJ-2022-08-02-013.

GOST 13496.4-93. (2011). Feed, compound feed, compound feed raw materials. Methods for determination of nitrogen content and crude protein. Moscow, Publishing House: Standartinform. 40-55.

GOST 29033-91. (1991). Grain and products of its processing. Fat determination method. 1-6, Publishing House: Standartinform, Moscow, Russia.

GOST EN15505-2013. (2014). Interstate standard. Food products. Definition of trace elements. Determination of sodium and magnesium using flame atomic absorption spectrometry with preliminary mineralization of the sample in a microwave oven. 1-15, Publishing House: Standartinform, Moscow, Russia.

GOST 26657-97. (1997). Feed, compound feed, compound feed raw materials. Phosphorus content determination method. 1-12, Publishing House: Minsk, Moscow, Russia.

GOST, E. N. (2015). Food products. Definition of trace elements. Determination of sodium and magnesium using flame atomic absorption spectrometry with preliminary mineralization of the sample in a microwave oven. Standartinform.

GOST 26176-91. (1993). Feed, compound feed. Methods for the determination of soluble and easily hydrolysable carbohydrates. 9-17, Publishing House: Standartinform, Moscow, Russia.

Pycia, K., Jaworska, G., Telega, J., Sudoł, I., & Kuźniar, P. (2018). Effect of adding potato maltodextrins on baking properties of triticale flour and quality of bread. LWT, 96, 199–204. doi:10.1016/j.lwt.2018.05.039.

Stankevich G. N., Ostapchuk N. V. (1992). Drawing up a mathematical description from experimental data. Mathematical modelling of food production processes: Collection of problems: Textbook. Kiev: Vyshcha shk, 3-59.

der Poel, A. F. B. van, Abdollahi, M. R., Cheng, H., Colovic, R., den Hartog, L. A., Miladinovic, D., Page, G., Sijssens, K., Smillie, J. F., Thomas, M., Wang, W., Yu, P., & Hendriks, W. H. (2020). Future directions of animal feed technology research to meet the challenges of a changing world. Animal Feed Science and Technology, 270, 114692. doi:10.1016/j.anifeedsci.2020.114692.

Marinchenko, T. (2021). Raw Material Resources for Extruding. KnE Life Sciences, 6(3), 384–393. doi:10.18502/kls.v0i0.8969.

Rojas, O. J., Vinyeta, E., & Stein, H. H. (2016). Effects of pelleting, extrusion, or extrusion and pelleting on energy and nutrient digestibility in diets containing different levels of fiber and fed to growing pigs. Journal of Animal Science, 94(5), 1951–1960. doi:10.2527/jas.2015-0137.

Cunha, T. J., & Shirley, R. L. (2012). Nitrogen and energy nutrition of ruminants. Academic Press, Cambridge, United States.

Marinchenko, T. (2020). Resource-saving technologies for preparing fodder crops. BIO Web of Conferences, 27, 00106. doi:10.1051/bioconf/20202700106.

Pycia, K., Jaworska, G., Telega, J., Sudoł, I., & Kuźniar, P. (2018). Effect of adding potato maltodextrins on baking properties of triticale flour and quality of bread. Lwt, 96, 199–204. doi:10.1016/j.lwt.2018.05.039.

Vandenbossche, V., Candy, L., Evon, P., Rouilly, A., & Pontalier, P.-Y. (2019). Extrusion. Green Food Processing Techniques, 289–314, Academic Press, Cambridge, United States. doi:10.1016/b978-0-12-815353-6.00010-0.

Stryapkov A. V., Antimonov S. V., Sokolov O. Y. (2004). Extrusion processing as a factor in obtaining “Environmentally Safe” products from grain and its derivatives. Vestnik OGU, 2, 171.

Potgieter, G., Cason, E. D., DeFlaun, M. F., Jacobs, K., & van Heerden, E. (2022). Management and Stimulation of High Metabolic Rates of Biomes to Effectively Remediate Mine Drainage. Journal of Human, Earth, and Future, 3(2), 204-212. doi:10.28991/HEF-2022-03-02-06.

Dennett, A. L., & Trethowan, R. M. (2013). Milling efficiency of triticale grain for commercial flour production. Journal of Cereal Science, 57(3), 527–530. doi:10.1016/j.jcs.2013.03.002.

Sitnikov, V. A., Morozkov, N. A., & Slavnov, E. V. (2008). An unconventional method of preparing concentrated feed and the results of feeding them to animals. Agrarian Bulletin of the Urals, (3), 52-55.

Ovsyannikov, A. I. (1976). Fundamentals of experienced business in animal husbandry. Kolos, Moscow, Russia.

Brenes, A., Viveros, A., Centeno, C., Arija, I., & Marzo, F. (2008). Nutritional value of raw and extruded chickpeas (Cicer arietinum L.) for growing chickens. Spanish Journal of Agricultural Research, 6(4), 537–545. doi:10.5424/sjar/2008064-348.

Moritz, J. S., Parsons, A. S., Buchanan, N. P., Calvalcanti, W. B., Cramer, K. R., & Beyer, R. S. (2005). Effect of gelatinizing dietary starch through feed processing on zero-to three-week broiler performance and metabolism. Journal of Applied Poultry Research, 14(1), 47–54. doi:10.1093/japr/14.1.47.

Abd El-Khalek, E., & Janssens, G. P. J. (2010). Effect of extrusion processing on starch gelatinisation and performance in poultry. World’s Poultry Science Journal, 66(1), 53–63. doi:10.1017/S0043933910000073.

Lankhorst, C., Tran, Q. D., Havenaar, R., Hendriks, W. H., & van der Poel, A. F. B. (2007). The effect of extrusion on the nutritional value of canine diets as assessed by in vitro indicators. Animal Feed Science and Technology, 138(3–4), 285–297. doi:10.1016/j.anifeedsci.2006.11.015.

Liu, S. Y., Selle, P. H., & Cowieson, A. J. (2013). Strategies to enhance the performance of pigs and poultry on sorghum-based diets. Animal Feed Science and Technology, 181(1–4), 1–14. doi:10.1016/j.anifeedsci.2013.01.008.

Ljøkjel, K., Sørensen, M., Storebakken, T., & Skrede, A. (2004). Digestibility of protein, amino acids and starch in mink (Mustela vison) fed diets processed by different extrusion conditions. Canadian Journal of Animal Science, 84(4), 673–680. doi:10.4141/A01-089.

Al-Mahasneh, M. A., & Rababah, T. M. (2007). Effect of moisture content on some physical properties of green wheat. Journal of Food Engineering, 79(4), 1467–1473. doi:10.1016/j.jfoodeng.2006.04.045.

Iztayev, A., Yakiyayeva, M., Maemerov, M., Iztayev, B., Urazaliev, R., Dauletkeldі, Y., ... & Toxanbayeva, B. (2018). The investigation of the impact of dynamic deterioration of ozone on grass growth and the consequence of ion-ozone cavitation treatment. Journal of Advanced Research in Dynamical and Control Systems, 10(13 Special Issue), 663-671.

Saldivar, S. O. S. (2016). Cereals: Types and Composition. Encyclopedia of Food and Health, 718–723, Academic Press, Cambridge, United States. doi:10.1016/b978-0-12-384947-2.00128-8.

Iztayev, A., Yakiyayeva, M., Kulazhanov, T., Toxanbayeva, B., & Chakanova, Z. (2018). Efficient mathematical models of ion-ozon cavitation treatment for long-term storage of grain legume crops. Acta Technica, 63(1B), 23.

Iztayev, A., Urazaliev, R., Yakiyayeva, M., Maemerov, M., Shaimerdenova, D., Iztayev, B., ... & Dauletkeldi, Y. (2018). Regress models of ion-ozon treatment without and with cavitation, describing changes of indicators for grain crops quality. Methodology, Acta Technica 63 No. 1B/2018, 1–8.

Full Text: PDF

DOI: 10.28991/ESJ-2023-07-05-08


  • There are currently no refbacks.

Copyright (c) 2023 Rabiga Kassymbek, Auyelbek Iztayev, Tahir Balevi, Urishbay Chomanov, Gulzhan Zhumaliyeva, Assiya Shoman