Improving the Theoretical and Methodological Framework for Implementing Digital Twin Technology in Various Sectors of Agriculture

Alexander Semin, Denis Mironov, Mikhail Kislitskiy, Alexander Zasypkin, Valery Ivanov


The aim of this study is to systematize and improve the theoretical and methodological framework for implementing digital twin technology. The study focuses on digital twins in agriculture. This paper is designed to solve the scientific problem associated with the development of a methodological framework for the implementation of digital twins in the work of agricultural organizations. Using methods of analysis of socio-economic phenomena and processes on the basis of a set of scientific approaches, economic-statistical analysis, and others, the study considers the importance of digital twins of agricultural machinery and equipment, identifies trends in agriculture determined by digitalization, and suggests promising areas for digital twins of agricultural machinery and equipment. This paper also examines the theoretical basis for the implementation of digital twin technology in the agricultural sector of production. New research results complement the theoretical provisions on the essence of digital twin technology; develop the methodological provisions of digital twin technology, represented by the study of their significance, principles, and features of operation. The study may be seen as academically novel as it reveals the prerequisites for implementing digital technology in agriculture as well as clarifies and improves the theoretical and methodological provisions of the application of digital twin technology in various sectors of agriculture.


Doi: 10.28991/ESJ-2023-07-04-05

Full Text: PDF


Digital Twin; Digitalization; Agricultural; Technology, Production and Management.


Abdrakhmanova, G., Vasilkovsky, S., Vishnevsky, K., Gokhberg, L., Demidkina, O., Demyanova, A., Zinina, T., Zorina, O., Kovaleva, G., Kotsemir, M., Kuzina, L., Kuznetsova, I., Lola, I., Martynov, D., ... Shugal, N. (2022). Indicators of the Digital Economy: 2022: Statistical Collection. doi:10.17323/978-5-7598-2697-2. (In Russian).

Prokhorov, A., & Lysachev, M. (2020). Digital double. Analysis, trends, world experience (1st Edi.). Alliansprint LLC, Moscow, Russia. (In Russian).

Wong, C. Y., McFarlane, D., Ahmad Zaharudin, A., & Agarwal, V. (2002). The intelligent product driven supply chain. IEEE International Conference on Systems, Man and Cybernetics, Yasmine Hammamet, Tunisia. doi:10.1109/icsmc.2002.1173319.

Hribernik, K. A., Rabe, L., Thoben, K. D., & Schumacher, J. (2006). The product avatar as a product-instance-centric information management concept. International Journal of Product Lifecycle Management, 1(4), 367–379. doi:10.1504/IJPLM.2006.011055.

Rasheed, A., San, O., & Kvamsdal, T. (2020). Digital twin: Values, challenges and enablers from a modeling perspective. IEEE Access, 8, 21980-22012. doi:10.1109/ACCESS.2020.2970143.

Bumbaca, F., Misra, S., & Rossi, P. E. (2020). Scalable Target Marketing: Distributed Markov Chain Monte Carlo for Bayesian Hierarchical Models. Journal of Marketing Research, 57(6), 999–1018. doi:10.1177/0022243720952410.

Biktimirov, V. R., & Rashchupkina, A. A. (2018). Modern methods of quality management. Digital Twin. Modern Research and Development, 8, 1-25. (In Russian).

Lapsomboonkamol, S., Songkram, N., Thamsuwan, P., & Songkram, N. (2022). The Mediating Effect of Knowledge Integration on the Relationship between Capability and Innovative Behaviour. Emerging Science Journal, 6, 92-107. doi:10.28991/ESJ-2022-SIED-07.

El Saddik, A. (2018). Digital Twins: The Convergence of Multimedia Technologies. IEEE Multimedia, 25(2), 87–92. doi:10.1109/MMUL.2018.023121167.

Söderberg, R., Wärmefjord, K., Carlson, J. S., & Lindkvist, L. (2017). Toward a Digital Twin for real-time geometry assurance in individualized production. CIRP Annals, 66(1), 137–140. doi:10.1016/j.cirp.2017.04.038.

GOST R 57700.37–2021. (2021). Computer models and modeling. Digital doubles of products. General provisions. Available online: (accessed on April 2023). (In Russian).

Lee, J., Bagheri, B., & Kao, H. A. (2015). A Cyber-Physical Systems architecture for Industry 4.0-based manufacturing systems. Manufacturing Letters, 3, 18–23. doi:10.1016/j.mfglet.2014.12.001.

Frolov, E., Frolov, E., Parshina, I., Parshina, I., Zaitsev, A., Zaitsev, A., Klimov, A. (2019). Industry 4.0: Digital Counterpart as means for effectiveness increase of production system. Science Intensive Technologies in Mechanical Engineering, 2018(2), 42–48. doi:10.30987/article_5c486cc51ea422.53107269.

Shchekochikhin, O. V. (2021). Modern trends in the management of cyber-physical systems based on digital twins. Information and Economic Aspects of Standardization and Technological Regulation, 5(63), 33-37.

Bolton, R. N., McColl-Kennedy, J. R., Cheung, L., Gallan, A., Orsingher, C., Witell, L., & Zaki, M. (2018). Customer experience challenges: bringing together digital, physical and social realms. Journal of Service Management, 29(5), 776–808. doi:10.1108/JOSM-04-2018-0113.

Tao, F., Sui, F., Liu, A., Qi, Q., Zhang, M., Song, B., Guo, Z., Lu, S. C.-Y., & Nee, A. Y. C. (2018). Digital twin-driven product design framework. International Journal of Production Research, 57(12), 3935–3953. doi:10.1080/00207543.2018.1443229.

Glaessgen, E., & Stargel, D. (2012). The Digital Twin Paradigm for Future NASA and U.S. Air Force Vehicles. 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference & 20th AIAA/ASME/AHS Adaptive Structures Conference &14th AIAA, Honolulu, Hawaii. doi:10.2514/6.2012-1818.

Rechkalov, A. V., Artyukhov, A. V., Kulikov, G. G., & Novikov, V. N. (2022). The Concept of Transformation of the Model of Planning and Management Processes Based on the Digital Twin of the Production System in the Industrial Model of a Machine-Building Enterprise. Vestnik UGATU, 26(1), 120–135. doi:10.54708/19926502_2022_26195120.

Baranovsky, V. Y., & Zaichenko, I. M. (2018). Formation of a strategic enterprise management map based on the concept of digital business transformation. Scientific and Technical Bulletin of St. Petersburg State Polytechnic University. Economic Sciences, 3, 185–193.

Borovkov, A. I., Maruseva V.M., Ryabov Yu. A., & Shcherbina L.A. (2015). Bionic design. St. Petersburg, Publishing House of the Polytechnic University, 1-92, Moscow, Russia.

Borovkov, A. I., & Ryabov, Yu. A. (2019). Definition, development and application of digital twins: the approach of the Competence Center of NTI SPbPU "New Production Technologies". Digital Substation, 12, 20-25. Available online: (accessed on April 2023). (In Russian).

Borovkov, A. I., Ryabov, Yu. A., & Gamzikova, A. A. (2020). Typologization of digital twins. Clustering of the Digital Economy: Global Challenges, 2, 473-482. doi:10.18720/IEP/2020.5/61.

Borovkov, A. I., Ryabov, Yu. A., Shcherbina, L. A., & Gamzikova, A. A. (2021). Digital Twins: Questions of terminology. St. Petersburg, Polytech-Press. doi:10.18720/SPBPU/2/i22-26.

Lysych M.N., Shabanov M.L., Nagaitsev V.M., Chernyshov V.V. (2021). Review of Methods for Modeling the Interaction Tillage Tools of Soil-Processing Machines and Soil Environments. Modern High Technologies, 9, 86–93. doi:10.17513/snt.38821.

Shiboldenkov, V., & Kalinina, O. A. (2021). Analysis of the concepts of digital twins in high-tech production. Proceedings of the All-Russian Scientific Conference on the Organization of Production, December 2020, Moscow, Russia, 216-222.

Mucha, T., & Seppala, T. (2020). Artificial Intelligence Platforms – A New Research Agenda for Digital Platform Economy. SSRN Electronic Journal. doi:10.2139/ssrn.3532937.

Matsukawa, H., Minner, S., & Nakashima, K. (2020). Editorial: Industry 4.0 and Production Economics. International Journal of Production Economics, 226. doi:10.1016/j.ijpe.2020.107666.

Amare, M., Parvathi, P., & Nguyen, T. T. (2023). Micro insights on the pathways to agricultural transformation: Comparative evidence from Southeast Asia and Sub-Saharan Africa. Canadian Journal of Agricultural Economics / Revue Canadienne dagroeconomie, 71(1), 69–87. doi:10.1111/cjag.12326

Lachuga, Y. f., Izmaylov, A. Y., Lobachevskiy, Y. P., & Shogenov, Y. K. (2022). The Results of Scientific Research of Agro-engineering Scientific Organizations on the Development of Digital Systems in Agriculture. Machinery and Equipment for Rural Area, 3(3), 2–9. doi:10.33267/2072-9642-2022-3-2-9.

Lachuga, Y. F., Izmaylov, A. Y., Lobachevsky, Y. P., & Shogenov, Y. K. (2022). The Results of Scientific Research of Agro-engineering Scientific Organizations on the Development of Digital Systems in Agriculture. Machinery and Equipment for Rural Area, 4(4), 2–6. doi:10.33267/2072-9642-2022-4-2-6.

Lobachevskiy, Y. P., & Dorokhov, A. S. (2021). Digital technologies and robotic devices in the agriculture. Agricultural Machinery and Technologies, 15(4), 6–10. doi:10.22314/2073-7599-2021-15-4-6-10.

Wamba, S. F., Dubey, R., Gunasekaran, A., & Akter, S. (2020). The performance effects of big data analytics and supply chain ambidexterity: The moderating effect of environmental dynamism. International Journal of Production Economics, 222. doi:10.1016/j.ijpe.2019.09.019.

Fosso Wamba, S., Queiroz, M. M., Guthrie, C., & Braganza, A. (2022). Industry experiences of artificial intelligence (AI): benefits and challenges in operations and supply chain management. Production Planning and Control, 33(16), 1493–1497. doi:10.1080/09537287.2021.1882695.

Lachuga, Y. F., Izmailov, A. Y., Lobachevsky, Y. P., Dorokhov, A. S., & Samsonov, V. A. (2021). Priority areas of scientific and technical development of the domestic tractor industry. Machinery and Equipment for Rural Area, 2(2), 2–7. doi:10.33267/2072-9642-2021-2-2-7.

Lachuga, Yu. F., Izmailov, A. Yu., Lobachevsky, Ya. P., Dorokhov, A. S., & Samsonov, V. A. (2021). Priority directions of scientific and technological development of domestic tractor construction. Rural Mechanic, 3, 2-4.

Solomentsev, Yu. M., & Frolov, E. B. (2018). Digital twins’ products and production systems. General Director, 8, 18-25.

Khitrykh, D. P. (2022). On the issue of the critical dependence of the Russian oil and gas industry on imported software. Automation and IT in the Oil and Gas Industry, 4(50), 16-24.

Perrot, C., Ferguson, H. J., Mulholland, M., Brown, A., Buckley, C., Humphrey, J., ... & Almeida, A. (2022). Rendered Services and Dysservices of Dairy Farming to the Territories: A Bottom-up Approach in European Atlantic Area. Journal of Human, Earth, and Future, 3(3), 396-402. doi:10.28991/HEF-2022-03-03-010.

Khitrykh, D. P. (2021). Modern methods of designing structures made of composite materials. Composite World, 1(94), 46-47.

Khitrykh, D. P., Malamanov, S. Yu., & Pavlovsky, V. A. (2018). On the issue of constructing a simulation model of a ship's water fire extinguishing system. Marine Intelligent Technologies, 2-1(44), 210-215.

Vendrell-Herrero, F., Bustinza, O. F., & Vaillant, Y. (2021). Adoption and optimal configuration of smart products: The role of firm internationalization and offer hybridization. Industrial Marketing Management, 95, 41–53. doi:10.1016/j.indmarman.2021.04.001.

Rodnov, K. V., & Malozemov, G. A. (2022). Problems and prospects of forecasting the resource of piston engines using simulation modeling methods. Mechatronics, Automation and Robotics, 9, 117-122. doi:10.26160/2541-8637-2022-9-117-122.

Panarin, R. N., & Khvorova, L. A. (2021). Software development for the digital twin of the agro-robot. High-Performance Computing Systems and Technologies, 5(1), 210-216.

Dubey, R., Bryde, D. J., Dwivedi, Y. K., Graham, G., Foropon, C., & Papadopoulos, T. (2023). Dynamic digital capabilities and supply chain resilience: The role of government effectiveness. International Journal of Production Economics, 258. doi:10.1016/j.ijpe.2023.108790.

Vaillant, Y., Lafuente, E., & Vendrell-Herrero, F. (2023). Assessment of industrial pre-determinants for territories with active product-service innovation ecosystems. Technovation, 119. doi:10.1016/j.technovation.2022.102658.

Kohtamäki, M., Parida, V., Oghazi, P., Gebauer, H., & Baines, T. (2019). Digital servitization business models in ecosystems: A theory of the firm. Journal of Business Research, 104, 380–392. doi:10.1016/j.jbusres.2019.06.027.

Sjödin, D., Parida, V., Jovanovic, M., & Visnjic, I. (2020). Value Creation and Value Capture Alignment in Business Model Innovation: A Process View on Outcome-Based Business Models. Journal of Product Innovation Management, 37(2), 158–183. doi:10.1111/jpim.12516.

Kohtamäki, M., Rabetino, R., Parida, V., Sjödin, D., & Henneberg, S. (2022). Managing digital servitization toward smart solutions: Framing the connections between technologies, business models, and ecosystems. Industrial Marketing Management, 105, 253–267. doi:10.1016/j.indmarman.2022.06.010.

1996-N-127-FZ. (1996). Federal Law on Science and State Scientific and Technical Policy. Available online: (accessed on April 2023).

Queiroz, M. M., Fosso Wamba, S., Machado, M. C., & Telles, R. (2020). Smart production systems drivers for business process management improvement: An integrative framework. Business Process Management Journal, 26(5), 1075–1092. doi:10.1108/BPMJ-03-2019-0134.

The Garant.Ru Portal (2023). Decree of the President of the Russian Federation on the approval of the Food Security Doctrine of the Russian Federation of January, 2020, No. 20. Available online: (accessed on May 2023).

Presidential Decree N204. (2018). Decree of the President of the Russian Federation of May 7, 2018 N 204 “On national goals and strategic objectives of the development of the Russian Federation for the period up to 2024.” May, 7, 204.

Russian Government (2018). Presidium of the Council under the President of the Russian Federation for Strategic Development and National Projects. Passport of the national project "International Cooperation and Export". (2018). Approved by the (Protocol dated December 24, 2018, No. 16). Available online: (accessed on April 2023). (In Russian).

Olaoye, O. A., Ohuche, J. C., Nwachukwu, A. C., & Nwaigwe, U. V. (2022). Development of starter culture for the improvement in the quality of ogiri, a food condiment. HighTech and Innovation Journal, 3(1), 37-44. doi:10.28991/HIJ-2022-03-01-04.

Budkin, Yu. V., & Sholkin, V. G. (2021). Challenges of the world economy and a new strategy for the development of standardization. Information and Economic Aspects of Standardization and Technical Regulation, 5(63), 4-7.

Izmailov, A. Yu., Elizarov, V. P., Antyshev, N. M., Lobachevsky, Ya. P., Shevtsov, V. G., …, & Fedorenko, V. F. (2009). Methodology for using conditional conversion coefficients of tractors, grain harvesters and forage harvesters into reference units when determining the standards of their needs. Rosinformagrotech, Moscow, Russia. Available online: (accessed on April 2023).

Iovlev, G. A., Pobedinsky, V. V, & Goldina, I. I. (2021). Development of the performance characteristics of tractors in the USA and the USSR (Russia) - stages of development. Discussion, 6(109), 6–18. doi:10.46320/2077-7639-2021-6-109-6-18.

Interfax (2022). Grain harvest in Russia amounted to 155 million tons. Interfax News Agency. Interfax, Moscow, Russia. Available online: (accessed on April 2023). (In Russian).

National Report. (2022). On the progress and results of the implementation in 2021 of the State Program for the Development of Agriculture and regulation of agricultural products, raw materials and food markets. Approved by the Decree of the Government of the Russian Federation of June 30, 2022, No. 1751-R.

Hewey, D. (2021). The Merius Smart Mill smart platform is the digital twin of industrial production. CAD and Graphics. Special Issue: Management and Production, 9, 12-13.

Strategic Direction. (2021). Strategic Direction in the field of digital transformation of the agro-industrial and fisheries sectors of the Russian Federation for the period up to 2030. Approved by the Decree of the Government of the Russian Federation, of December 29, 2021, No. 3971-r, Moscow, Russia. Available online: (accessed on April 2023).

Full Text: PDF

DOI: 10.28991/ESJ-2023-07-04-05


  • There are currently no refbacks.

Copyright (c) 2023 Alexander Semin, Denis Mironov, Mikhail Kislitskiy, Alexander Zasypkin, Valery Ivanov