The Partial L-Moment of the Four Kappa Distribution

Pannarat Guayjarernpanishk, Piyapatr Bussababodhin, Monchaya Chiangpradit


Statistical analysis of extreme events such as flood events is often carried out to predict large return period events. The behaviour of extreme events not only involves heavy-tailed distributions but also skewed distributions, similar to the four-parameter Kappa distribution (K4D). In general, this covers many extreme distributions such as the generalized logistic distribution (GLD), the generalized extreme value distribution (GEV), the generalized Pareto distribution (GPD), and so on. To utilize these distributions, we have to estimate parameters accurately. There are many parameter estimation methods, for example, Method of Moments, Maximum Likelihood Estimator, L-Moments, or partial L-Moments. Nowadays, no researchers have applied the partial L-Moments method to estimate the parameters of K4D. Therefore, the objective of this paper is to derive the partial L-Moments (PL-Moments) for K4D, namely the PL-Moments of the K4D in order to estimate hydrological extremes from censored data. The findings of this paper are formulas of parameter estimation for K4D based on the PL-Moments approach. We have derived the Partial Probability-Weighted Moments (PPWMs) of the K4D (β'r) and derive the estimation of parameters when separated by shape parameters (k,h) conditions i.e., case k>-1 and h>0, case k>-1 and h=0 and case -1<k<-1/h and h<0. Finally, we expect that the parameter estimate for K4D from this formula will help to make accurate forecasts.


Doi: 10.28991/ESJ-2023-07-04-06

Full Text: PDF


Four Kappa Distribution; L-Moments; Partial L-Moments; Extreme Event.


Wu, Q., & Vos, P. (2018). Inference and Prediction. Handbook of statistics, 38, 111-172, Elsevier, Amsterdam, Netherlands. doi:10.1016/

Rossi, R. J. (2018). Mathematical statistics: An introduction to likelihood based inference. John Wiley & Sons, Hoboken, United States. doi:10.1002/9781118771075.

Hosking, J. R. M. (1990). L-Moments: Analysis and Estimation of Distributions Using Linear Combinations of Order Statistics. Journal of the Royal Statistical Society: Series B (Methodological), 52(1), 105–124. doi:10.1111/j.2517-6161.1990.tb01775.x.

Hosking, J. R. M., & Wallis, J. R. (1997). Regional frequency analysis. Cambridge University Press, Cambridge, United Kingdom. doi:10.1017/CBO9780511529443.

Sankarasubramanian, A., & Srinivasan, K. (1999). Investigation and comparison of sampling properties of L-moments and conventional moments. Journal of Hydrology, 218(1–2), 13–34. doi:10.1016/S0022-1694(99)00018-9.

Karvanen, J. (2006). Estimation of quantile mixtures via L-moments and trimmed L-moments. Computational Statistics and Data Analysis, 51(2), 947–959. doi:10.1016/j.csda.2005.09.014.

Greenwood, J. A., Landwehr, J. M., Matalas, N. C., & Wallis, J. R. (1979). Probability weighted moments: Definition and relation to parameters of several distributions expressable in inverse form. Water Resources Research, 15(5), 1049–1054. doi:10.1029/WR015i005p01049.

Wang, Q. J. (1990). Unbiased estimation of probability weighted moments and partial probability weighted moments from systematic and historical flood information and their application to estimating the GEV distribution. Journal of Hydrology, 120(1–4), 115–124. doi:10.1016/0022-1694(90)90145-N.

Wang, Q. J. (1996). Using partial probability weighted moments to fit the extreme value distributions to censored samples. Water Resources Research, 32(6), 1767–1771. doi:10.1029/96WR00352.

Wang, Q. J. (1990). Estimation of the GEV distribution from censored samples by method of partial probability weighted moments. Journal of Hydrology, 120(1–4), 103–114. doi:10.1016/0022-1694(90)90144-M.

Seenoi, P., Busababodhin, P., & Park, J.-S. (2020). Bayesian Inference in Extremes Using the Four-Parameter Kappa Distribution. Mathematics, 8(12), 2180. doi:10.3390/math8122180.

Ibrahim, M. N. (2022). Four-parameter kappa distribution for modeling precipitation extremes: a practical simplified method for parameter estimation in light of the L-moment. Theoretical and Applied Climatology, 150(1–2), 567–591. doi:10.1007/s00704-022-04176-4.

Papukdee, N., Park, J. S., & Busababodhin, P. (2022). Penalized likelihood approach for the four-parameter kappa distribution. Journal of Applied Statistics, 49(6), 1559–1573. doi:10.1080/02664763.2021.1871592.

Shin, Y., & Park, J. S. (2023). Modeling climate extremes using the four-parameter kappa distribution for r-largest order statistics. Weather and Climate Extremes, 39, 1–12. doi:10.1016/j.wace.2022.100533.

Campos-Aranda, D. F. (2023). Análisis de frecuencias comparativo con momentos L entre la distribución Kappa y seis de aplicación generalizada. Tecnología y Ciencias Del Agua, 14(1), 200–250. doi:10.24850/j-tyca-14-01-05. (In Spanish).

Hosking, J. R. M. (1994). Four-parameter kappa distribution. IBM Journal of Research and Development, 38(3), 251–258. doi:10.1147/rd.383.0251.

Winchester, C. (2000). On estimation of the four-parameter kappa distribution. Master Thesis, Dalhousie University, Halifax, Canada.

Hosking, J. R. M., & Balakrishnan, N. (2015). A uniqueness result for L-estimators, with applications to L-moments. Statistical Methodology, 24, 69–80. doi:10.1016/j.stamet.2014.08.002.

Park, J. S., & Park, B. J. (2002). Maximum likelihood estimation of the four-parameter Kappa distribution using the penalty method. Computers and Geosciences, 28(1), 65–68. doi:10.1016/S0098-3004(01)00069-3.

Park, J. S., & Yoon Kim, T. (2007). Fisher information matrix for a four-parameter kappa distribution. Statistics and Probability Letters, 77(13), 1459–1466. doi:10.1016/j.spl.2007.03.002.

Park, J. S., Seo, S. C., & Kim, T. Y. (2009). A kappa distribution with a hydrological application. Stochastic Environmental Research and Risk Assessment, 23(5), 579–586. doi:10.1007/s00477-008-0243-5.

Murshed, M. S., Seo, Y. A., & Park, J. S. (2014). LH-moment estimation of a four parameter kappa distribution with hydrologic applications. Stochastic Environmental Research and Risk Assessment, 28(2), 253–262. doi:10.1007/s00477-013-0746-6.

Park, J. S. (2005). A simulation-based hyperparameter selection for quantile estimation of the generalized extreme value distribution. Mathematics and Computers in Simulation, 70(4), 227–234. doi:10.1016/j.matcom.2005.09.003.

Busababodhin, P., Seo, Y. A., Park, J. S., & Kumphon, B. (2016). LH-moment estimation of Wakeby distribution with hydrological applications. Stochastic Environmental Research and Risk Assessment, 30(6), 1757–1767. doi:10.1007/s00477-015-1168-4.

Full Text: PDF

DOI: 10.28991/ESJ-2023-07-04-06


  • There are currently no refbacks.

Copyright (c) 2023 Monchaya Chiangpradit, Pannarat Guayjarernpanishk