Factors Influencing Consumer Acceptance of Mobile Payment during the COVID-19 Pandemic & Usage Continuance Intent: A Quantitative Study

Syed Faizan Hussain Zaidi, Omar Ali, Marsela Thanasi-Boçe

Abstract


The presence of COVID-19 has transformed the business sector’s paradigm and prompted a speedy consumption of mobile payment software systems of diverse ranges. Corporate sectors and businesses across the globe brought a shift to offer mobile payment methods; consequently, consumers were urged to maximize the use of mobile payment throughout the pandemic. The present research aims to investigate the factors that might influence consumers' intent to accept mobile payments and their relationships during COVID-19. The technology adoption model and the unified theory of acceptance and use of technology were employed in this proposed mobile payment adoption framework. A quantitative research approach was identified as a suitable method for this research. An online survey was administered, and 304 participants responded to the questionnaire. The results of the data analysis revealed statistically significant relationships and a positive impact of the factors perceived performance, social influence, consumers’ satisfaction, and perceived usefulness on consumers’ usage continuation intention. However, the results identified that factors such as transaction risk didn’t affect perceived usefulness, and financial transaction transparency didn’t affect consumers’ usage intention. This study makes a substantial contribution to the consumers’ technology acceptance literature in terms of validating a proposed theoretical framework that highlights the factors that influence consumers’ mobile payment usage intentions. As this study was conducted at a later stage of the COVID-19 pandemic, it adds value to the existing literature by providing insights to business managers on the factors influencing mobile payment usage. Considering the practical perspective, this study offers evidence of the essential elements that mobile payment service designers and marketers should consider.

 

Doi: 10.28991/ESJ-2023-07-05-07

Full Text: PDF


Keywords


COVID-19 Pandemic; Mobile Payment; Adoption; Social Influence; Technology Adoption Model;

References


Purwandari, B., Suriazdin, S. A., Hidayanto, A. N., Setiawan, S., Phusavat, K., & Maulida, M. (2022). Factors Affecting Switching Intention from Cash on Delivery to E-Payment Services in C2C E-Commerce Transactions: COVID-19, Transaction, and Technology Perspectives. Emerging Science Journal, 6, 136–150. doi:10.28991/esj-2022-SPER-010.

Al-Qudah, A. A., Al-Okaily, M., Alqudah, G., & Ghazlat, A. (2022). Mobile payment adoption in the time of the COVID-19 pandemic. Electronic Commerce Research. doi:10.1007/s10660-022-09577-1.

Shao, Z., Zhang, L., Li, X., & Guo, Y. (2019). Antecedents of trust and continuance intention in mobile payment platforms: The moderating effect of gender. Electronic Commerce Research and Applications, 33. doi:10.1016/j.elerap.2018.100823.

Dewan, S. G., & Chen, L. (2005). Mobile Payment Adoption in the US: A Cross-industry, Crossplatform Solution. Journal of Information Privacy and Security, 1(2), 4–28. doi:10.1080/15536548.2005.10855765.

Luna, I. R. (2017). Mobile Payments at the Point of Sale: Key Issues, Perspectives and Guidelines for Future User Adoption. PhD Thesis, Universidad de Granada, Granada, Spain.

Musyaffi, A. M., Sari, D. A. P., & Respati, D. K. (2021). Understanding of digital payment usage during COVID-19 pandemic: a study of UTAUT extension model in Indonesia. The Journal of Asian Finance, Economics and Business, 8(6), 475-482.

Karjaluoto, H., Shaikh, A. A., Leppäniemi, M., & Luomala, R. (2020). Examining consumers’ usage intention of contactless payment systems. International Journal of Bank Marketing, 38(2), 332–351. doi:10.1108/IJBM-04-2019-0155.

Kursan Milaković, I. (2021). Purchase experience during the COVID-19 pandemic and social cognitive theory: The relevance of consumer vulnerability, resilience, and adaptability for purchase satisfaction and repurchase. International Journal of Consumer Studies, 45(6), 1425–1442. doi:10.1111/ijcs.12672.

Zhao, Y., & Bacao, F. (2021). How does the pandemic facilitate mobile payment? An investigation on users’ perspective under the COVID-19 pandemic. International Journal of Environmental Research and Public Health, 18(3), 1–22. doi:10.3390/ijerph18031016.

Al-Sharafi, M. A., Al-Qaysi, N., Iahad, N. A., & Al-Emran, M. (2022). Evaluating the sustainable use of mobile payment contactless technologies within and beyond the COVID-19 pandemic using a hybrid SEM-ANN approach. International Journal of Bank Marketing, 40(5), 1071–1095. doi:10.1108/IJBM-07-2021-0291.

Cao, T. (2021). The Study of Factors on the Small and Medium Enterprises’ Adoption of Mobile Payment: Implications for the COVID-19 Era. Frontiers in Public Health, 9, 646592. doi:10.3389/fpubh.2021.646592.

Capgemini (2020). Capgemini’s world payments report 2020: will COVID-19 spark the end of cash payments? Capgemini, Paris, France. Available online: https://www.capgemini.com/news/capgeminis-world-payments-report-2020 (accessed on July 2023).

Worldpay. (2023). Global Payments Reports. Available online: https://go.worldpay.com/2023GPR (accessed on July 2023).

Flavian, C., Guinaliu, M., & Lu, Y. (2020). Mobile payments adoption – introducing mindfulness to better understand consumer behavior. International Journal of Bank Marketing, 38(7), 1575–1599. doi:10.1108/IJBM-01-2020-0039.

Khanra, S., Dhir, A., Kaur, P., & Joseph, R. P. (2021). Factors influencing the adoption postponement of mobile payment services in the hospitality sector during a pandemic. Journal of Hospitality and Tourism Management, 46, 26–39. doi:10.1016/j.jhtm.2020.11.004.

Mouakket, S. (2020). Investigating the role of mobile payment quality characteristics in the United Arab Emirates: implications for emerging economies. International Journal of Bank Marketing, 38(7), 1465–1490. doi:10.1108/IJBM-03-2020-0139.

Kapoor, K. K., Dwivedi, Y. K., & Williams, M. D. (2015). Examining the role of three sets of innovation attributes for determining adoption of the interbank mobile payment service. Information Systems Frontiers, 17(5), 1039–1056. doi:10.1007/s10796-014-9484-7.

Lin, W. R., Lin, C. Y., & Ding, Y. H. (2020). Factors affecting the behavioral intention to adopt mobile payment: An empirical study in Taiwan. Mathematics, 8(10), 1851. doi:10.3390/math8101851.

Yeh, H. (2020). Factors in the Ecosystem of Mobile payment affecting its use: From the customers’ Perspective in Taiwan. Journal of Theoretical and Applied Electronic Commerce Research, 15(1), 13–29. doi:10.4067/S0718-18762020000100103.

Acheampong, P., Boamah, K. B., Agyeman-Prempeh, N., Boateng, F., Bediako, I. A., & Abubakar, R. (2021). Trust and continuance of mobile payment use intention: A study based on structural equation modeling. Information Resources Management Journal, 34(1), 19–42. doi:10.4018/IRMJ.2021010102.

Ooi, K. B., & Tan, G. W. H. (2016). Mobile technology acceptance model: An investigation using mobile users to explore smartphone credit card. Expert Systems with Applications, 59, 33–46. doi:10.1016/j.eswa.2016.04.015.

Liébana-Cabanillas, F., Japutra, A., Molinillo, S., Singh, N., & Sinha, N. (2020). Assessment of mobile technology use in the emerging market: Analyzing intention to use m-payment services in India. Telecommunications Policy, 44(9), 102009. doi:10.1016/j.telpol.2020.102009.

Venkatesh, Morris, Davis, & Davis. (2003). User Acceptance of Information Technology: Toward a Unified View. MIS Quarterly, 27(3), 425. doi:10.2307/30036540.

Yang, M., Al Mamun, A., Mohiuddin, M., Nawi, N. C., & Zainol, N. R. (2021). Cashless transactions: A study on intention and adoption of e-wallets. Sustainability (Switzerland), 13(2), 831. doi:10.3390/su13020831.

Upadhyay, N., Upadhyay, S., Abed, S. S., & Dwivedi, Y. K. (2022). Consumer adoption of mobile payment services during COVID-19: extending meta-UTAUT with perceived severity and self-efficacy. International Journal of Bank Marketing, 40(5), 960–991. doi:10.1108/IJBM-06-2021-0262.

Al-Saedi, K., Al-Emran, M., Ramayah, T., & Abusham, E. (2020). Developing a general extended UTAUT model for M-payment adoption. Technology in Society, 62, 101293. doi:10.1016/j.techsoc.2020.101293.

Hoek, B. V. (2017). Four factors contributing to slow mobile payment adoption rates in the U.S. retail touch points. Retail TouchPoints, New Jersey, United States. Available online: https://www.retailtouchpoints.com/features/executive-viewpoints/four-factors-contributing-to-slow-mobile-payment-adoption-rates-in-the-u-s (accessed on July 2023).

Guo, Y., Zhu, Y., Barnes, S. J., Bao, Y., Li, X., & Le-Nguyen, K. (2018). Understanding cross-product purchase intention in an IT brand extension context. Psychology and Marketing, 35(6), 392–411. doi:10.1002/mar.21094.

Hellemans, J., Willems, K., & Brengman, M. (2022). Covid-19 and mobile payment in Belgium: Closing the digital divide or just for the young, social, and impulsive? Electronic Commerce Research. doi:10.1007/s10660-022-09655-4.

Suárez, S. L. (2016). Poor people׳s money: The politics of mobile money in Mexico and Kenya. Telecommunications Policy, 40(10–11), 945–955. doi:10.1016/j.telpol.2016.03.001.

Singh, N., Sinha, N., & Liébana-Cabanillas, F. J. (2020). Determining factors in the adoption and recommendation of mobile wallet services in India: Analysis of the effect of innovativeness, stress to use and social influence. International Journal of Information Management, 50, 191–205. doi:10.1016/j.ijinfomgt.2019.05.022.

Thakur, R., & Srivastava, M. (2014). Adoption readiness, personal innovativeness, perceived risk and usage intention across customer groups for mobile payment services in India. Internet Research, 24(3), 369–392. doi:10.1108/IntR-12-2012-0244.

Talwar, S., Dhir, A., Khalil, A., Mohan, G., & Islam, A. K. M. N. (2020). Point of adoption and beyond. Initial trust and mobile-payment continuation intention. Journal of Retailing and Consumer Services, 55, 102086. doi:10.1016/j.jretconser.2020.102086.

Abdullah, & Naved Khan, M. (2021). Determining mobile payment adoption: A systematic literature search and bibliometric analysis. Cogent Business & Management, 8(1). doi:10.1080/23311975.2021.1893245.

Patil, P., Tamilmani, K., Rana, N. P., & Raghavan, V. (2020). Understanding consumer adoption of mobile payment in India: Extending Meta-UTAUT model with personal innovativeness, anxiety, trust, and grievance redressal. International Journal of Information Management, 54, 102144. doi:10.1016/j.ijinfomgt.2020.102144.

Raman, P., & Aashish, K. (2021). To continue or not to continue: a structural analysis of antecedents of mobile payment systems in India. International Journal of Bank Marketing, 39(2), 242–271. doi:10.1108/IJBM-04-2020-0167.

Siby, K. M. (2021). A Study on Consumer Perception of Digital Payment Methods in times of Covid Pandemic. International Journal of Scientific Research in Engineering and Management, 5(3).

Eka Putri, Y., Kaderi Wiryono, S., Anny Nainggolan, Y., & Dwi Cahyono, T. (2019). Method of Payment Adoption in Indonesia E-Commerce. The Asian Journal of Technology Management (AJTM), 12(2), 94–102. doi:10.12695/ajtm.2019.12.2.2.

Puriwat, W., & Tripopsakul, S. (2021). Explaining an adoption and continuance intention to use contactless payment technologies: During the covid-19 pandemic. Emerging Science Journal, 5(1), 85–95. doi:10.28991/esj-2021-01260.

Lian, J. W., & Li, J. (2021). The dimensions of trust:An investigation of mobile payment services in Taiwan. Technology in Society, 67, 101753. doi:10.1016/j.techsoc.2021.101753.

Yang, C. C., Yang, S. Y., & Chang, Y. C. (2023). Predicting Older Adults’ Mobile Payment Adoption: An Extended TAM Model. International Journal of Environmental Research and Public Health, 20(2), 1391. doi:10.3390/ijerph20021391.

Bhattacherjee, A. (2001). Understanding Information Systems Continuance: An Expectation-Confirmation Model. MIS Quarterly, 25(3), 351. doi:10.2307/3250921.

Davis, F. D., Bagozzi, R. P., & Warshaw, P. R. (1989). User Acceptance of Computer Technology: A Comparison of Two Theoretical Models. Management Science, 35(8), 982–1003. doi:10.1287/mnsc.35.8.982.

Jaradat, M. I. R. M., & Al-Mashaqba, A. M. (2014). Understanding the adoption and usage of mobile payment services by using TAM3. International Journal of Business Information Systems, 16(3), 271–296. doi:10.1504/IJBIS.2014.063768.

Venkatesh, V., Brown, S. A., & Bala, H. (2013). Bridging the Qualitative-Quantitative Divide: Guidelines for Conducting Mixed Methods Research in Information Systems. MIS Quarterly, 37(1), 21–54. doi:10.25300/misq/2013/37.1.02.

Hsiao, M. H. (2019). Mobile payment services as a facilitator of value co-creation: A conceptual framework. Journal of High Technology Management Research, 30(2), 100353. doi:10.1016/j.hitech.2019.100353.

Park, J., Ahn, J., Thavisay, T., & Ren, T. (2019). Examining the role of anxiety and social influence in multi-benefits of mobile payment service. Journal of Retailing and Consumer Services, 47, 140–149. doi:10.1016/j.jretconser.2018.11.015.

Kaur, P., Dhir, A., Singh, N., Sahu, G., & Almotairi, M. (2020). An innovation resistance theory perspective on mobile payment solutions. Journal of Retailing and Consumer Services, 55, 102059. doi:10.1016/j.jretconser.2020.102059.

Kaur, K., & Kaur, M. (2010). Innovation Diffusion and Adoption Models: Foundation and Conceptual Framework. Management and Labour Studies, 35(2), 289–301. doi:10.1177/0258042X1003500209.

Shankar, A., & Datta, B. (2018). Factors Affecting Mobile Payment Adoption Intention: An Indian Perspective. Global Business Review, 19(3_suppl), S72–S89. doi:10.1177/0972150918757870.

Singh, S. (2020). An integrated model combining the ECM and the UTAUT to explain users’ post-adoption behaviour towards mobile payment systems. Australasian Journal of Information Systems, 24. doi:10.3127/ajis.v24i0.2695.

Lee, J. M., Lee, B., & Rha, J. Y. (2019). Determinants of mobile payment usage and the moderating effect of gender: Extending the UTAUT model with privacy risk. International Journal of Electronic Commerce Studies, 10(1), 43–64. doi:10.7903/ijecs.1644.

Dahlberg, T., Guo, J., & Ondrus, J. (2015). A critical review of mobile payment research. Electronic Commerce Research and Applications, 14(5), 265–284. doi:10.1016/j.elerap.2015.07.006.

Loh, X. M., Lee, V. H., Tan, G. W. H., Hew, J. J., & Ooi, K. B. (2022). Towards a Cashless Society: The Imminent Role of Wearable Technology. Journal of Computer Information Systems, 62(1), 39–49. doi:10.1080/08874417.2019.1688733.

Hasan, R., Ashfaq, M., & Shao, L. (2021). Evaluating Drivers of Fintech Adoption in the Netherlands. Global Business Review. doi:10.1177/09721509211027402.

Taherdoost, H. (2018). A review of technology acceptance and adoption models and theories. Procedia Manufacturing, 22, 960–967. doi:10.1016/j.promfg.2018.03.137.

Venkatesh, Thong, & Xu. (2012). Consumer Acceptance and Use of Information Technology: Extending the Unified Theory of Acceptance and Use of Technology. MIS Quarterly, 36(1), 157. doi:10.2307/41410412.

Liébana-Cabanillas, F., Marinkovic, V., Ramos de Luna, I., & Kalinic, Z. (2018). Predicting the determinants of mobile payment acceptance: A hybrid SEM-neural network approach. Technological Forecasting and Social Change, 129, 117–130. doi:10.1016/j.techfore.2017.12.015.

Alshare, K. A., Alomari, M. K., Lane, P. L., & Freeze, R. D. (2019). Development and determinants of end-user intention: usage of expert systems. Journal of Systems and Information Technology, 21(2), 166–185. doi:10.1108/JSIT-08-2018-0108.

Ul, B., F., R., Mehraj, A., Ahmad, A., & Assad, S. (2017). A Compendious Study of Online Payment Systems: Past Developments, Present Impact, and Future Considerations. International Journal of Advanced Computer Science and Applications, 8(5), 256–71. doi:10.14569/ijacsa.2017.080532.

Çera, G., Pagria, I., Khan, K. A., & Muaremi, L. (2020). Mobile banking usage and gamification: the moderating effect of generational cohorts. Journal of Systems and Information Technology, 12(3), 243–263. doi:10.1108/JSIT-01-2020-0005.

Wiafe, I., Koranteng, F. N., Tettey, T., Kastriku, F. A., & Abdulai, J. D. (2020). Factors that affect acceptance and use of information systems within the Maritime industry in developing countries: The case of Ghana. Journal of Systems and Information Technology, 22(4), 21–45. doi:10.1108/JSIT-06-2018-0091.

Leong, C. M., Tan, K. L., Puah, C. H., & Chong, S. M. (2021). Predicting mobile network operators users m-payment intention. European Business Review, 33(1). doi:10.1108/EBR-10-2019-0263.

Aji, H. M., Berakon, I., & Md Husin, M. (2020). COVID-19 and e-wallet usage intention: A multigroup analysis between Indonesia and Malaysia. Cogent Business & Management, 7(1), 1804181. doi:10.1080/23311975.2020.1804181.

Kaleta, J. P., & Mahadevan, L. (2020). Examining differences in perceptions of trust, privacy and risk in home and public Wi-Fi internet channels. Journal of Systems and Information Technology, 12(3), 265–287. doi:10.1108/JSIT-04-2019-0075.

Pal, A., Herath, T., De’, R., & Rao, H. R. (2020). Contextual facilitators and barriers influencing the continued use of mobile payment services in a developing country: insights from adopters in India. Information Technology for Development, 26(2), 394–420. doi:10.1080/02681102.2019.1701969.

Falk, T., Kunz, W. H., Schepers, J. J. L., & Mrozek, A. J. (2016). How mobile payment influences the overall store price image. Journal of Business Research, 69(7), 2417–2423. doi:10.1016/j.jbusres.2016.01.011.

Wang, M., Ling, A., He, Y., Tan, Y., Zhang, L., Chang, Z., & Ma, Q. (2022). Pleasure of paying when using mobile payment: Evidence from EEG studies. Frontiers in Psychology, 13, 1004068. doi:10.3389/fpsyg.2022.1004068.

Soman, D. (2003). The effect of payment transparency on consumption: Quasi-experiments from the field. Marketing Letters, 14(3), 173–183. doi:10.1023/A:1027444717586.

Baishya, K., & Samalia, H. V. (2020). Extending unified theory of acceptance and use of technology with perceived monetary value for smartphone adoption at the bottom of the pyramid. International Journal of Information Management, 51, 102036. doi:10.1016/j.ijinfomgt.2019.11.004.

Sharma, A., Dwivedi, Y. K., Arya, V., & Siddiqui, M. Q. (2021). Does SMS advertising still have relevance to increase consumer purchase intention? A hybrid PLS-SEM-neural network modelling approach. Computers in Human Behavior, 124. doi:10.1016/j.chb.2021.106919.

Ambalov, I. A. (2021). An investigation of technology trust and habit in IT use continuance: a study of a social network. Journal of Systems and Information Technology, 23(1), 53–81. doi:10.1108/JSIT-05-2019-0096.

Sunarjo, W. A., Nurhayati, S., & Muhardono, A. (2021). Consumer Behavior Toward Adoption of Mobile Payment: A Case Study in Indonesia During the COVID-19 Pandemic*. Journal of Asian Finance, Economics and Business, 8(4), 581–590. doi:10.13106/jafeb.2021.vol8.no4.0581.

Morosan, C., & DeFranco, A. (2016). It’s about time: Revisiting UTAUT2 to examine consumers’ intentions to use NFC mobile payments in hotels. International Journal of Hospitality Management, 53, 17–29. doi:10.1016/j.ijhm.2015.11.003.

Ranjbarian, B., Sanayei, A., Kaboli, M. R., & Hadadian, A. (2012). An Analysis of Brand Image, Perceived Quality, Customer Satisfaction and Re-purchase Intention in Iranian Department Stores. International Journal of Business and Management, 7(6), 44–48. doi:10.5539/ijbm.v7n6p40.

Teng, P. K., Ling, T. J., & Seng, K. W. K. (2018). Understanding Customer Intention to Use Mobile Payment Services in Nanjing, China. International Journal of Community Development and Management Studies, 2, 049–060. doi:10.31355/22.

Geebren, A., Jabbar, A., & Luo, M. (2021). Examining the role of consumer satisfaction within mobile eco-systems: Evidence from mobile banking services. Computers in Human Behavior, 114, 106584. doi:10.1016/j.chb.2020.106584.

Zikmund, W. G., Babin, B. J., Carr, J. C., & Griffin, M. (2013). Business research methods. Cengage Learning, Boston, United States.

Ali, O., Shrestha, A., Jaradat, A., & Al-Ahmad, A. (2022). An Evaluation of Key Adoption Factors towards Using the Fog Technology. Big Data and Cognitive Computing, 6(3), 81. doi:10.3390/bdcc6030081.

Soliman, K. S., & Janz, B. D. (2004). An exploratory study to identify the critical factors affecting the decision to establish Internet-based interorganizational information systems. Information and Management, 41(6), 697–706. doi:10.1016/j.im.2003.06.001.

Fowler Jr, F. J. (2013). Survey research methods. Sage Publications, Thousand Oaks, United States.

Mikolajewicz, N., & Komarova, S. V. (2019). Meta-analytic methodology for basic research: A practical guide. Frontiers in Physiology, 10, 1–20. doi:10.3389/fphys.2019.00203.

Ali, O., Murray, P. A., Muhammed, S., Dwivedi, Y. K., & Rashiti, S. (2022). Evaluating Organizational Level IT Innovation Adoption Factors among Global Firms. Journal of Innovation & Knowledge, 7(3), 100213. doi:10.1016/j.jik.2022.100213.

Mabad, T., Ali, O., Ally, M., Wamba, S. F., & Chan, K. C. (2021). Making Investment Decisions on RFID Technology: An Evaluation of Key Adoption Factors in Construction Firms. IEEE Access, 9, 36937–36954. doi:10.1109/ACCESS.2021.3063301.

Callegaro, M., Manfreda, K. L., & Vehovar, V. (2015). Web survey methodology. Sage Publications, Thousand Oaks, United States. doi:10.4135/9781529799651.

Leavy, P. (2022). Research design: Quantitative, qualitative, mixed methods, arts-based, and community-based participatory research approaches. Guilford Publications, New York City, United States.

Frey, B. B. (2018). The SAGE Encyclopedia of Educational Research, Measurement, and Evaluation. Sage Publications, Thousand Oaks, United States. doi:10.4135/9781506326139.

Ali, O., Shrestha, A., Ghasemaghaei, M., & Beydoun, G. (2021). Assessment of Complexity in Cloud Computing Adoption: a Case Study of Local Governments in Australia. Information Systems Frontiers, 24(2), 595–617. doi:10.1007/s10796-021-10108-w.

Thammarak, K., Sirisathitkul, Y., Kongkla, P., & Intakosum, S. (2022). Automated Data Digitization System for Vehicle Registration Certificates Using Google Cloud Vision API. Civil Engineering Journal, 8(7), 1447-1458. doi:10.28991/CEJ-2022-08-07-09.

Dahlberg, T., Guo, J., & Ondrus, J. (2015). A critical review of mobile payment research. Electronic Commerce Research and Applications, 14(5), 265–284. doi:10.1016/j.elerap.2015.07.006.

SANG, N. M. (2021). Critical factors affecting consumer intention of using mobile banking applications during COVID-19 pandemic: An empirical study from Vietnam. The Journal of Asian Finance, Economics and Business, 8(11), 157-167.

Byrne, B. M. (2001). Structural Equation Modeling With AMOS, EQS, and LISREL: Comparative Approaches to Testing for the Factorial Validity of a Measuring Instrument. International Journal of Testing, 1(1), 55–86. doi:10.1207/s15327574ijt0101_4.

Slade, E. L., Dwivedi, Y. K., Piercy, N. C., & Williams, M. D. (2015). Modeling Consumers’ Adoption Intentions of Remote Mobile Payments in the United Kingdom: Extending UTAUT with Innovativeness, Risk, and Trust. Psychology and Marketing, 32(8), 860–873. doi:10.1002/mar.20823.

Talukder, S., Chiong, R., Dhakal, S., Sorwar, G., & Bao, Y. (2019). A two-stage structural equation modeling-neural network approach for understanding and predicting the determinants of m-government service adoption. Journal of Systems and Information Technology, 21(4), 419–438. doi:10.1108/JSIT-10-2017-0096.

Tu, M., Wu, L., Wan, H., Ding, Z., Guo, Z., & Chen, J. (2022). The Adoption of QR Code Mobile Payment Technology During COVID-19: A Social Learning Perspective. Frontiers in Psychology, 12. doi:10.3389/fpsyg.2021.798199.

100-Arnold, D. M., Burns, K. E. A., Adhikari, N. K. J., Kho, M. E., Meade, M. O., & Cook, D. J. (2009). The design and interpretation of pilot trials in clinical research in critical care. Critical Care Medicine, 37(Supplement), S69–S74. doi:10.1097/ccm.0b013e3181920e33.

Ali, O., Shrestha, A., Chatfield, A., & Murray, P. (2020). Assessing information security risks in the cloud: A case study of Australian local government authorities. Government Information Quarterly, 37(1), 101–119. doi:10.1016/j.giq.2019.101419.

Thabane, L., Ma, J., Chu, R., Cheng, J., Ismaila, A., Rios, L. P., Robson, R., Thabane, M., Giangregorio, L., & Goldsmith, C. H. (2010). A tutorial on pilot studies: the what, why and how. BMC Medical Research Methodology, 10(1), 1-10. doi:10.1186/1471-2288-10-1.

Ali, O., Soar, J., & Shrestha, A. (2018). Perceived potential for value creation from cloud computing: a study of the Australian regional government sector. Behaviour and Information Technology, 37(12), 1157–1176. doi:10.1080/0144929X.2018.1488991.

Heale, R., & Twycross, A. (2015). Validity and reliability in quantitative studies. Evidence-Based Nursing, 18(3), 66–67. doi:10.1136/eb-2015-102129.

Tamilmani, K., Rana, N. P., & Dwivedi, Y. K. (2021). Consumer Acceptance and Use of Information Technology: A Meta-Analytic Evaluation of UTAUT2. Information Systems Frontiers, 23(4), 987–1005. doi:10.1007/s10796-020-10007-6.

Warmbrod, J. R. (2001). Conducting, interpreting, and reporting quantitative research. Proceeding of the Annual National Agricultural Education Research Conference (Pre-Session), 12 December, 2001, New Orleans, United States.

George, D. & Mallery, M. (2003). SPSS for windows step by step: A simple study guide and reference. Pearson Education, London, United Kingdom.

DeVellis, R. F., & Thorpe, C. T. (2021). Scale development: Theory and applications. Sage Publications, Thousand Oaks, United States.

Leech, N. L., Barrett, K. C., & Morgan, G. A. (2014). IBM SPSS for Intermediate Statistics, Routledge, New York, United States. doi:10.4324/9780203122778.

Noy, C. (2008). Sampling knowledge: The hermeneutics of snowball sampling in qualitative research. International Journal of Social Research Methodology, 11(4), 327–344. doi:10.1080/13645570701401305.

Hair, J. F., Black, W. C., Babin, B. J., Anderson, R. E., & Tatham, R. L. (2006). Multivariate data analysis (Vol. 6). Pearson Prentice, Hall Upper Saddle River, United States.

Bazeley, P. (2020). Qualitative data analysis: Practical strategies. Qualitative Data Analysis. Sage Publications, Thousand Oaks, United States.

Wilson, J. (2014). Essentials of business research: A guide to doing your research project. Sage Publications, Thousand Oaks, United States.

Tharenou, P., Donohue, R., & Cooper, B. (2007). Management research methods. Cambridge University Press, Cambridge, United Kingdom. doi:10.1017/CBO9780511810527.

Creswell, J. W., & Creswell, J. D. (2017). Research design: Qualitative, quantitative, and mixed methods approaches. Sage Publications, Thousand Oaks, United States.

Paswan, A. (2009). Confirmatory factor analysis and structural equations modeling: An introduction. Dept. of Marketing and Logistics, COB, University of North Texas, Denton, United States.

Doll, W. J., Xia, W., & Torkzadeh, G. (1994). A Confirmatory Factor Analysis of the End-User Computing Satisfaction Instrument. MIS Quarterly, 18(4), 453. doi:10.2307/249524.

Baumgartner, H., & Homburg, C. (1996). Applications of structural equation modeling in marketing and consumer research: A review. International Journal of Research in Marketing, 13(2), 139–161. doi:10.1016/0167-8116(95)00038-0.

Kline, R. B. (2011). Principles and practice of structural equation modeling. Guilford, New York, United States.

Bagozzi, R. P., & Yi, Y. (2012). Specification, evaluation, and interpretation of structural equation models. Journal of the Academy of Marketing Science, 40(1), 8–34. doi:10.1007/s11747-011-0278-x.

Zaidi, S. F. H., Kulakli, A., Osmanaj, V., & Zaidi, S. A. H. (2023). Students’ Perceived M-Learning Quality: An Evaluation and Directions to Improve the Quality for H-Learning. Education Sciences, 13(6), 578. doi:10.3390/educsci13060578.

Holmes-Smith, P. (2011). Advanced Structural Equation Modelling using AMOS. workshop material provided at the ACSPRI 2011 Spring program. School Research Evaluation and Measurement Services. Melbourne, Australia.

Arbuckle, J. L. (2005). AmosTM 6.0 user’s guide. Amos. Development Corporation, Chicago, United States.

Li, C., & Li, H. (2023). Disentangling facial recognition payment service usage behavior: A trust perspective. Telematics and Informatics, 77, 101939. doi:10.1016/j.tele.2023.101939.

1Kapoor, A., Sindwani, R., Goel, M., & Shankar, A. (2022). Mobile wallet adoption intention amid COVID-19 pandemic outbreak: A novel conceptual framework. Computers and Industrial Engineering, 172, 108646. doi:10.1016/j.cie.2022.108646.

Westmattelmann, D., Grotenhermen, J. G., Sprenger, M., Oldeweme, A., & Schewe, G. (2020). Antecedents of Mobile Payment Adoption: A Customer Group-Specific Analysis in Mass-Attended Hospitality. Americas Conference on Information Systems, AMCIS 2020, 15-17 August, 2020.

Jung, J. H., Kwon, E., & Kim, D. H. (2020). Mobile payment service usage: U.S. consumers’ motivations and intentions. Computers in Human Behavior Reports, 1, 100008. doi:10.1016/j.chbr.2020.100008.

Khatun, M. N., Mitra, S., & Sarker, M. N. I. (2021). Mobile banking during COVID-19 pandemic in Bangladesh: A novel mechanism to change and accelerate people’s financial access. Green Finance, 3(3), 253–267. doi:10.3934/gf.2021013.

Reiting, P., Mladenow, A., Strauss, C., & Kotsis, G. (2020). Mobile payment. Proceedings of the 18th International Conference on Advances in Mobile Computing & Multimedia. https://doi.org/10.1145/3428690.3429182.

Ariffin, S. K., Abd Rahman, M. F. R., Muhammad, A. M., & Zhang, Q. (2021). Understanding the consumer’s intention to use the e-wallet services. Spanish Journal of Marketing - ESIC, 25(3), 446–461. doi:10.1108/SJME-07-2021-0138.

Mun, Y. P., Khalid, H., & Nadarajah, D. (2017). Millennials’ Perception on Mobile Payment Services in Malaysia. Procedia Computer Science, 124, 397–404. doi:10.1016/j.procs.2017.12.170.

Ali, M., Wali, E., Al-Hinai, Y., & Kurnia, S. (2019). A process approach to examining mobile commerce adoption progression. Journal of Systems and Information Technology, 21(2), 215–235. doi:10.1108/JSIT-10-2017-0085.

Shachak, A., Kuziemsky, C., & Petersen, C. (2019). Beyond TAM and UTAUT: Future directions for HIT implementation research. Journal of Biomedical Informatics, 100, 103315. doi:10.1016/j.jbi.2019.103315.

Liu, T., Pan, B., & Yin, Z. (2020). Pandemic, Mobile Payment, and Household Consumption: Micro-Evidence from China. Emerging Markets Finance and Trade, 56(10), 2378–2389. doi:10.1080/1540496X.2020.1788539.

Koenig-Lewis, N., Marquet, M., Palmer, A., & Zhao, A. L. (2015). Enjoyment and social influence: predicting mobile payment adoption. The Service Industries Journal, 35(10), 537–554. doi:10.1080/02642069.2015.1043278.


Full Text: PDF

DOI: 10.28991/ESJ-2023-07-05-07

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Omar Ali, Syed Faizan Hussain Zaidi, Marsela Thanasi-Boçe