Educational Data Mining to Predict Bachelors Students’ Success
Abstract
Doi: 10.28991/ESJ-2023-SIED2-013
Full Text: PDF
Keywords
References
Shahiri, A. M., Husain, W., & Rashid, N. A. (2015). A Review on Predicting Student’s Performance Using Data Mining Techniques. Procedia Computer Science, 72, 414–422. doi:10.1016/j.procs.2015.12.157.
Najimi, A., Sharifirad, G., Amini, M., & Meftagh, S. (2013). Academic failure and students viewpoint: The influence of individual, internal and external organizational factors. Journal of Education and Health Promotion, 2(1), 22. doi:10.4103/2277-9531.112698.
Baek, C., & Doleck, T. (2020). A Bibliometric Analysis of the Papers Published in the Journal of Artificial Intelligence in Education from 2015-2019. International Journal of Learning Analytics and Artificial Intelligence for Education (IJAI), 2(1), 67. doi:10.3991/ijai.v2i1.14481.
Fischer, C., Pardos, Z. A., Baker, R. S., Williams, J. J., Smyth, P., Yu, R., Slater, S., Baker, R., & Warschauer, M. (2020). Mining Big Data in Education: Affordances and Challenges. Review of Research in Education, 44(1), 130–160. doi:10.3102/0091732X20903304.
Mohamad, S. K., & Tasir, Z. (2013). Educational Data Mining: A Review. Procedia - Social and Behavioral Sciences, 97, 320–324. doi:10.1016/j.sbspro.2013.10.240.
Yu, R., Jiang, D., & Warschauer, M. (2018). Representing and predicting student navigational pathways in online college courses. In Proceedings of the Fifth Annual ACM Conference on Learning at Scale, 44, 1-4. doi:10.1145/3231644.3231702.
Yağcı, M. (2022). Educational data mining: prediction of students’ academic performance using machine learning algorithms. Smart Learning Environments, 9(1), 1-19. doi:10.1186/s40561-022-00192-z.
Helal, S., Li, J., Liu, L., Ebrahimie, E., Dawson, S., Murray, D. J., & Long, Q. (2018). Predicting academic performance by considering student heterogeneity. Knowledge-Based Systems, 161, 134–146. doi:10.1016/j.knosys.2018.07.042.
Kuh, G. D., Kinzie, J. L., Buckley, J. A., Bridges, B. K., & Hayek, J. C. (2006). What matters to student success: A review of the literature. National Postsecondary Education Cooperative, Washington, United States.
Hampton, J. (2011). SEMMA and CRISP-DM: Data mining methodologies. Connecticut, United States. Available online: https://jesshampton.com/2011/02/16/semma-and-crisp-dm-data-mining-methodologies/ (accesed on May 2023).
Haines, R. T., & Mueller, C. E. (2013). Academic achievement: An adolescent perspective. International guide to student achievement. Routledge, Milton Park, United States. doi:10.4324/9780203850398-4.
Morales-Vives, F., Camps, E., & Dueñas, J. M. (2020). Predicting academic achievement in adolescents: The role of maturity, intelligence and personality. Psicothema, 32(1), 84–91. doi:10.7334/psicothema2019.262.
Simms, S., & Paschke-Wood, J. (2022). Academic Librarians and Student Success: Examining Changing Librarian Roles and Attitudes. Journal of Library Administration, 62(8), 1017-1044. doi:10.1080/01930826.2022.2127585.
Mentkowski, M., & Astin, A. W. (1992). Assessment for Excellence: The Philosophy and Practice of Assessment and Evaluation in Higher Education. The Journal of Higher Education, 63(6), 717. doi:10.2307/1982058.
Terenzini, P. T., & Reason, R. D. (2005). Parsing the first year of college: A conceptual framework for studying college impacts. Annual meeting of the Association for the Study of Higher Education, November, Philadelphia, United Stastes.
Tinto, V. (1997). Classrooms as communities: Exploring the educational character of student persistence. Journal of Higher Education, 68(6), 599-623. doi:10.2307/2959965.
Tinto, V. (2006). Research and practice of student retention: What next? Journal of College Student Retention: Research, Theory and Practice, 8(1), 1–19. doi:10.2190/4YNU-4TMB-22DJ-AN4W.
Romero, C., & Ventura, S. (2010). Educational data mining: A review of the state of the art. IEEE Transactions on Systems, Man and Cybernetics Part C: Applications and Reviews, 40(6), 601–618. doi:10.1109/TSMCC.2010.2053532.
Fernandes, E., Holanda, M., Victorino, M., Borges, V., Carvalho, R., & Erven, G. Van. (2019). Educational data mining: Predictive analysis of academic performance of public school students in the capital of Brazil. Journal of Business Research, 94, 335–343. doi:10.1016/j.jbusres.2018.02.012.
Hoffait, A. S., & Schyns, M. (2017). Early detection of university students with potential difficulties. Decision Support Systems, 101, 1–11. doi:10.1016/j.dss.2017.05.003.
Rebai, S., Ben Yahia, F., & Essid, H. (2020). A graphically based machine learning approach to predict secondary schools performance in Tunisia. Socio-Economic Planning Sciences, 70. doi:10.1016/j.seps.2019.06.009.
Musso, M. F., Hernández, C. F. R., & Cascallar, E. C. (2020). Predicting key educational outcomes in academic trajectories: a machine-learning approach. Higher Education, 80(5), 875–894. doi:10.1007/s10734-020-00520-7.
Waheed, H., Hassan, S. U., Aljohani, N. R., Hardman, J., Alelyani, S., & Nawaz, R. (2020). Predicting academic performance of students from VLE big data using deep learning models. Computers in Human Behavior, 104. doi:10.1016/j.chb.2019.106189.
Xu, X., Wang, J., Peng, H., & Wu, R. (2019). Prediction of academic performance associated with internet usage behaviors using machine learning algorithms. Computers in Human Behavior, 98, 166–173. doi:10.1016/j.chb.2019.04.015.
Bernacki, M. L., Chavez, M. M., & Uesbeck, P. M. (2020). Predicting achievement and providing support before STEM majors begin to fail. Computers and Education, 158. doi:10.1016/j.compedu.2020.103999.
Cruz-Jesus, F., Castelli, M., Oliveira, T., Mendes, R., Nunes, C., Sa-Velho, M., & Rosa-Louro, A. (2020). Using artificial intelligence methods to assess academic achievement in public high schools of a European Union country. Heliyon, 6(6). doi:10.1016/j.heliyon.2020.e04081.
Bakhshinategh, B., Zaiane, O. R., ElAtia, S., & Ipperciel, D. (2018). Educational data mining applications and tasks: A survey of the last 10 years. Education and Information Technologies, 23(1), 537–553. doi:10.1007/s10639-017-9616-z.
Azevedo, A., & Santos, M. F. (2008). KDD, semma and CRISP-DM: A parallel overview. IADIS Multi Conference on Computer Science and Information Systems (MCCSIS 200), 22-27 July, 2008, Amsterdam, Netherlands.
SAS Institute Inc. (2011). SAS ® Enterprise Miner 12.1 ® Reference Help (2nd Ed.). SAS Institute Inc, Cary, United States.
Bowman, N. A., & Garvey, J. C. (2022). Theories, findings, and implications from higher education research on student success. In How College Students Succeed, Routledge, 28-50. doi:10.4324/9781003445159-3.
Bursac, Z., Gauss, C. H., Williams, D. K., & Hosmer, D. W. (2008). Purposeful selection of variables in logistic regression. Source Code for Biology and Medicine, 3(1), 17. doi:10.1186/1751-0473-3-17.
DOI: 10.28991/ESJ-2023-SIED2-013
Refbacks
- There are currently no refbacks.