Stand up Against Bad Intended News: An Approach to Detect Fake News using Machine Learning

Nafiz Fahad, K. O. Michael Goh, Md. Ismail Hossen, K. M. Shahriar Shopnil, Israt Jahan Mitu, Md. A. Hossain Alif, Connie Tee


The purpose of this approach is to find out the effects and efficiently detect fake news by using a publicly available dataset. However, it is difficult for human beings to judge an article's truthfulness manually, which is why This paper mainly wanted to cure the effect and to found out an automated fake news detection system with benchmark accuracy by using a machine learning classifier, which must be higher than other recent research works. In essence, this work’s target is to find out an efficient way to detect fake and real news, and it also the target is to compare with existing work where researchers used machine learning classifiers and deep learning architecture. The proposed approach depended on a systematic literature review and a publicly available dataset where 7796 news data are recorded with 50% real and 50% fake news. The best and benchmark accuracy is 93.61%, achieved by the Support Vector Machine (SVM) among the used Random Forest, Decision Tree, KNN, and Logistics Regression classifiers, and the achieved accuracy is better than the exciting recent research works. Moreover, fake news is detected, people are able to differentiate between fake or real news, and effects are cured when people used SVM.


Doi: 10.28991/ESJ-2023-07-04-015

Full Text: PDF


Fake News; Rumor; False Information; Social Platforms; Machine Learning.


Buzea, M. C., Trausan-Matu, S., & Rebedea, T. (2022). Automatic Fake News Detection for Romanian Online News. Information (Switzerland), 13(3), 151. doi:10.3390/info13030151.

Adiba, F. I., Islam, T., Kaiser, M. S., Mahmud, M., & Rahman, M. A. (2020). Effect of corpora on classification of fake news using naive Bayes classifier. International Journal of Automation, Artificial Intelligence and Machine Learning, 1(1), 80-92.

Stewart, E. (2021). Detecting Fake News: Two Problems for Content Moderation. Philosophy & Technology, 34(4), 923–940. doi:10.1007/s13347-021-00442-x.

Alnazzawi, N., Alsaedi, N., Alharbi, F., & Alaswad, N. (2022). Using Social Media to Detect Fake News Information Related to Product Marketing: The FakeAds Corpus. Data, 7(4), 44. doi:10.3390/data7040044.

Wang, Y., McKee, M., Torbica, A., & Stuckler, D. (2019). Systematic Literature Review on the Spread of Health-related Misinformation on Social Media. Social Science and Medicine, 240, 112552. doi:10.1016/j.socscimed.2019.112552.

Zafarani, R., Zhou, X., Shu, K., & Liu, H. (2019). Fake news research: Theories, detection strategies, and open problems. Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 3207–3208. doi:10.1145/3292500.3332287.

Conroy, N. K., Rubin, V. L., & Chen, Y. (2015). Automatic deception detection: Methods for finding fake news. Proceedings of the Association for Information Science and Technology, 52(1), 1–4. doi:10.1002/pra2.2015.145052010082.

Ahmed, H., Traore, I., & Saad, S. (2017). Detection of Online Fake News Using N-Gram Analysis and Machine Learning Techniques. Intelligent, Secure, and Dependable Systems in Distributed and Cloud Environments, ISDDC 2017, Lecture Notes in Computer Science, vol 10618. Springer, Cham, Switzerland. doi:10.1007/978-3-319-69155-8_9.

Thaher, T., Saheb, M., Turabieh, H., & Chantar, H. (2021). Intelligent detection of false information in Arabic tweets utilizing hybrid Harris Hawks based feature selection and machine learning models. Symmetry, 13(4), 556. doi:10.3390/sym13040556.

Wang, W. Y. (2017). “Liar, Liar Pants on Fire”: A New Benchmark Dataset for Fake News Detection. Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers). doi:10.18653/v1/p17-2067.

Riedel, B., Augenstein, I., Spithourakis, G. P., & Riedel, S. (2017). A simple but tough-to-beat baseline for the Fake News Challenge stance detection task. arXiv preprint arXiv:1707.03264. doi:10.48550/arXiv.1707.03264.

Zhang, C., Gupta, A., Kauten, C., Deokar, A. V., & Qin, X. (2019). Detecting fake news for reducing misinformation risks using analytics approaches. European Journal of Operational Research, 279(3), 1036–1052. doi:10.1016/j.ejor.2019.06.022.

Awan, M. J., Yasin, A., Nobanee, H., Ali, A. A., Shahzad, Z., Nabeel, M., Zain, A. M., & Shahzad, H. M. F. (2021). Fake news data exploration and analytics. Electronics (Switzerland), 10(19), 2326. doi:10.3390/electronics10192326.

Meel, P., & Vishwakarma, D. K. (2021). A temporal ensembling based semi-supervised ConvNet for the detection of fake news articles. Expert Systems with Applications, 177(5), 115002. doi:10.1016/j.eswa.2021.115002.

Olan, F., Jayawickrama, U., Arakpogun, E. O., Suklan, J., & Liu, S. (2022). Fake news on Social Media: the Impact on Society. In Information Systems Frontiers. Information Systems Frontiers. doi:10.1007/s10796-022-10242-z.

Liao, H. P., & Wang, J. L. (2023). The impact of epidemic information on the public’s worries and attitude toward epidemic prevention measures during the COVID-19 outbreak. Current Psychology, 42(1), 145–153. doi:10.1007/s12144-021-01364-9.

Bastick, Z. (2021). Would you notice if fake news changed your behavior? An experiment on the unconscious effects of disinformation. Computers in Human Behavior, 116, 106633. doi:10.1016/j.chb.2020.106633.

Hamdan, Y. B. (2020). Faultless decision making for false information in online: a systematic approach. Journal of Soft Computing Paradigm (JSCP), 2(04), 226-235. doi:10.36548/jscp.2020.4.004.

Mohseni, S., Ragan, E., & Hu, X. (2019). Open issues in combating fake news: Interpretability as an opportunity. arXiv preprint arXiv:1904.03016. doi:10.48550/arXiv.1904.03016.

Shu, K., Sliva, A., Wang, S., Tang, J., & Liu, H. (2017). Fake News Detection on Social Media. ACM SIGKDD Explorations Newsletter, 19(1), 22–36. doi:10.1145/3137597.3137600.

Arif, M., Tonja, A. L., Ameer, I., Kolesnikova, O., Gelbukh, A., Sidorov, G., & Meque, A. G. M. (2022). CIC at CheckThat! 2022: multi-class and cross-lingual fake news detection. Working Notes of CLEF, CLEF 2022: Conference and Labs of the Evaluation Forum, 5–8 September, 2022, Bologna, Italy.

Alhakami, H., Alhakami, W., Baz, A., Faizan, M., Khan, M. W., & Agrawal, A. (2022). Evaluating Intelligent Methods for Detecting COVID-19 Fake News on Social Media Platforms. Electronics (Switzerland), 11(15), 2417. doi:10.3390/electronics11152417.

Zarate, C. A. J., & Tovar, L. A. N. (2022). Proposal for a Model for Detecting Fake News on Social Media in Mexico. International Conferences e-Society 2022 and Mobile Learning 2022, 12-14 March, 2022.

Pérez-Rosas, V., Kleinberg, B., Lefevre, A., & Mihalcea, R. (2017). Automatic detection of fake news. arXiv preprint arXiv:1708.07104. doi:10.48550/arXiv.1708.07104

Mitchell, T. M. (2006). The discipline of machine learning. Carnegie Mellon University, School of Computer Science, Machine Learning Department, Pittsburgh, United States.

Mahmoud, A. (2022). News.csv. Kaggle, San Francisco, United States. Available online: antonioskokiantonis/newscsv (accessed on April 2023).

Mahmud, M., Kaiser, M. S., McGinnity, T. M., & Hussain, A. (2021). Deep Learning in Mining Biological Data. Cognitive Computation, 13(1), 1–33. doi:10.1007/s12559-020-09773-x.

Ghafoor, H.Y., Jaffar, A., Jahangir, R., Iqbal, M.W., & Abbas, M.Z. (2022). Fake News Identification on Social Media Using Machine Learning Techniques. Proceedings of International Conference on Information Technology and Applications. Lecture Notes in Networks and Systems, vol 350, Springer, Singapore. doi:10.1007/978-981-16-7618-5_8.

Zhang, K., Wang, W., Chen, L., Liu, Y., Hu, J., Guo, F., Tian, W., Wang, Y., & Xue, F. (2020). Cross-validation of genes potentially associated with neoadjuvant chemotherapy and platinum-based chemoresistance in epithelial ovarian carcinoma. Oncology Reports, 44(3), 909–926. doi:10.3892/or.2020.7668.

Jain, A., Shakya, A., Khatter, H., & Gupta, A. K. (2019). A smart System for Fake News Detection Using Machine Learning. 2019 International Conference on Issues and Challenges in Intelligent Computing Techniques (ICICT), Ghaziabad, India. doi:10.1109/icict46931.2019.8977659.

Khan, J. Y., Khondaker, M. T. I., Afroz, S., Uddin, G., & Iqbal, A. (2021). A benchmark study of machine learning models for online fake news detection. Machine Learning with Applications, 4, 100032. doi:10.1016/j.mlwa.2021.100032.

Andrade, J. J., Da Fonseca, L. G., Farage, M., & Marques, G. L. de O. (2020). Prediction of the Performance of Bituminous Mixes Using Adaptive Neuro-Fuzzy Inference Systems. Revista Mundi Engenharia, Tecnologia e Gestão, 5(6), 1-14. doi:10.21575/25254782rmetg2020vol5n61367.

Full Text: PDF

DOI: 10.28991/ESJ-2023-07-04-015


  • There are currently no refbacks.

Copyright (c) 2023 Nafiz Fahad, Kazi Mahmud Shahriar Shopnil, Israt Jahan Mitu, Md Ashraful Hossain Alif, Md Ismail Hossen