Probabilistic Analysis Depending on the Distance from A COVID-19 Outbreak
Abstract
Doi: 10.28991/ESJ-2023-SPER-012
Full Text: PDF
Keywords
References
Areepong, Y., & Sunthornwat, R. (2020). Predictive Models for Cumulative Confirmed COVID-19 Cases by Day in Southeast Asia. Computer Modeling in Engineering & Sciences, 125(3), 927–942. doi:10.32604/cmes.2020.012323.
Wang, P., Zheng, X., Li, J., & Zhu, B. (2020). Prediction of epidemic trends in COVID-19 with logistic model and machine learning technics. Chaos, Solitons and Fractals, 139(110058). doi:10.1016/j.chaos.2020.110058.
Sunthornwat, R., & Areepong, Y. (2021). Predictive Model for the Total Daily Covid-19 Cases with Herd Immunity Policy. Chiang Mai University Journal of Natural Sciences, 20(1). doi:10.12982/CMUJNS.2021.016.
Brunner, N., & Kühleitner, M. (2021). Bertalanffy-Pütter models for the first wave of the COVID-19 outbreak. Infectious Disease Modelling, 6(2021), 532–544. doi:10.1016/j.idm.2021.03.003.
El Aferni, A., Guettari, M., & Tajouri, T. (2021). Mathematical model of Boltzmann’s sigmoidal equation applicable to the spreading of the coronavirus (Covid-19) waves. Environmental Science and Pollution Research, 28(30), 40400–40408. doi:10.1007/s11356-020-11188-y.
Niazkar, M., Eryılmaz Türkkan, G., Niazkar, H. R., & Türkkan, Y. A. (2020). Assessment of Three Mathematical Prediction Models for Forecasting the COVID-19 Outbreak in Iran and Turkey. Computational and Mathematical Methods in Medicine, 2020, 1–13. doi:10.1155/2020/7056285.
Khan, N., Arshad, A., Azam, M., Al-marshadi, A. H., & Aslam, M. (2022). Modeling and forecasting the total number of cases and deaths due to pandemic. Journal of Medical Virology, 94(4), 1592–1605. doi:10.1002/jmv.27506.
Khan, M. A., Khan, R., Algarni, F., Kumar, I., Choudhary, A., & Srivastava, A. (2022). Performance evaluation of regression models for COVID-19: A statistical and predictive perspective. Ain Shams Engineering Journal, 13(2), 101574. doi:10.1016/j.asej.2021.08.016.
Ogundokun, R. O., Lukman, A. F., Kibria, G. B. M., Awotunde, J. B., & Aladeitan, B. B. (2020). Predictive modelling of COVID-19 confirmed cases in Nigeria. Infectious Disease Modelling, 5, 543–548. doi:10.1016/j.idm.2020.08.003.
Joshi, H., Azarudheen, S., Nagaraja, M. S., & Chandraketu, S. (2022). On the quick estimation of probability of recovery from COVID-19 during first wave of epidemic in India: a logistic regression approach. Statistics in Transition New Series, 23(2), 197–208. doi:10.2478/stattrans-2022-0024.
Bhangu, K. S., Sandhu, J. K., & Sapra, L. (2022). Time series analysis of COVID-19 cases. World Journal of Engineering, 19(1), 40–48. doi:10.1108/WJE-09-2020-0431.
Doornik, J. A., Castle, J. L., & Hendry, D. F. (2021). Modeling and forecasting the COVID-19 pandemic time-series data. Social Science Quarterly, 102(5), 2070–2087. doi:10.1111/ssqu.13008.
Wang, Y., Yan, Z., Wang, D., Yang, M., Li, Z., Gong, X., Wu, D., Zhai, L., Zhang, W., & Wang, Y. (2022). Prediction and analysis of COVID-19 daily new cases and cumulative cases: times series forecasting and machine learning models. BMC Infectious Diseases, 22(1), 495. doi:10.1186/s12879-022-07472-6.
Shinde, G. R., Kalamkar, A. B., Mahalle, P. N., Dey, N., Chaki, J., & Hassanien, A. E. (2020). Forecasting Models for Coronavirus Disease (COVID-19): A Survey of the State-of-the-Art. SN Computer Science, 1(4), 1-15. doi:10.1007/s42979-020-00209-9.
Ünlü, R., & Namli, E. (2020). Machine learning and classical forecasting methods based decision support systems for covid-19. Computers, Materials and Continua, 64(3), 1383–1399. doi:10.32604/cmc.2020.011335.
Kuvvetli, Y., Deveci, M., Paksoy, T., & Garg, H. (2021). A predictive analytics model for COVID-19 pandemic using artificial neural networks. Decision Analytics Journal, 1, 100007. doi:10.1016/j.dajour.2021.100007.
Lounis, M., Torrealba-Rodriguez, O., & Conde-Gutiérrez, R. A. (2021). Predictive models for COVID-19 cases, deaths and recoveries in Algeria. Results in Physics, 30, 104845. doi:10.1016/j.rinp.2021.104845.
Wang, F., Cao, L., & Song, X. (2022). Mathematical modeling of mutated COVID-19 transmission with quarantine, isolation and vaccination. Mathematical Biosciences and Engineering, 19(8), 8035–8056. doi:10.3934/mbe.2022376.
Daniel Deborah, O. (2020). Mathematical Model for the Transmission of Covid-19 with Nonlinear Forces of Infection and the Need for Prevention Measure in Nigeria. Journal of Infectious Diseases and Epidemiology, 6(5), 158. doi:10.23937/2474-3658/1510158.
Ghosh, A., Roy, S., Mondal, H., Biswas, S., & Bose, R. (2022). Mathematical modelling for decision making of lockdown during COVID-19. Applied Intelligence, 52(1), 699–715. doi:10.1007/s10489-021-02463-7.
Oke, A. S., Bada, O. I., Rasaq, G., & Adodo, V. (2022). Mathematical analysis of the dynamics of COVID-19 in Africa under the influence of asymptomatic cases and re-infection. Mathematical Methods in the Applied Sciences, 45(1), 137–149. doi:10.1002/mma.7769.
De La Sen, M., & Ibeas, A. (2020). On a Sir Epidemic Model for the COVID-19 Pandemic and the Logistic Equation. Discrete Dynamics in Nature and Society, 2020, 1-7. doi:10.1155/2020/1382870.
Zhao, H., Merchant, N. N., McNulty, A., Radcliff, T. A., Cote, M. J., Fischer, R. S. B., Sang, H., & Ory, M. G. (2021). COVID-19: Short term prediction model using daily incidence data. PLOS ONE, 16(4), e0250110. doi:10.1371/journal.pone.0250110.
Riyapan, P., Shuaib, S. E., & Intarasit, A. (2021). A mathematical model of COVID-19 pandemic: A case study of Bangkok, Thailand. Computational and Mathematical Methods in Medicine, 2021, 1-11. doi:10.1155/2021/6664483.
Šušteršič, T., Blagojević, A., Cvetković, D., Cvetković, A., Lorencin, I., Šegota, S. B., Milovanović, D., Baskić, D., Car, Z., & Filipović, N. (2021). Epidemiological Predictive Modeling of COVID-19 Infection: Development, Testing, and Implementation on the Population of the Benelux Union. Frontiers in Public Health, 9. doi:10.3389/fpubh.2021.727274.
Campillo-Funollet, E., Van Yperen, J., Allman, P., Bell, M., Beresford, W., Clay, J., Dorey, M., Evans, G., Gilchrist, K., Memon, A., Pannu, G., Walkley, R., Watson, M., & Madzvamuse, A. (2021). Predicting and forecasting the impact of local outbreaks of COVID-19: Use of SEIR-D quantitative epidemiological modelling for healthcare demand and capacity. International Journal of Epidemiology, 50(4), 1103–1113. doi:10.1093/ije/dyab106.
Khoshnaw, S. H. A., & Mohammed, A. S. (2022). Computational simulations of the effects of social distancing interventions on the COVID-19 pandemic. AIMS Bioengineering, 9(3), 239–251. doi:10.3934/bioeng.2022016.
Nguyen, D. Q., Vo, N. Q., Nguyen, T. T., Nguyen-An, K., Nguyen, Q. H., Tran, D. N., & Quan, T. T. (2022). BeCaked: An Explainable Artificial Intelligence Model for COVID-19 Forecasting. Scientific Reports, 12(1), 7969. doi:10.1038/s41598-022-11693-9.
Sunthornwat, R., & Areepong, Y. (2021). Predictive models for the number of cumulative cases for spreading coronavirus disease 2019 in the world. Engineering and Applied Science Research, 48(4), 432–445. doi:10.14456/easr.2021.46.
Worldometer. (2021). COVID-19 Coronavirus Pandemic. Available Online: https://www.worldometers.info/coronavirus/ #countries. (accessed on January 2023).
DistanceFromTo (2021). Distance Between Cities and Places. Available Online: https://www.distancefromto.net. (accessed on January 2023).
Levenberg, K. (1944). A method for the solution of certain non-linear problems in least squares. Quarterly of Applied Mathematics, 2(2), 164–168. doi:10.1090/qam/10666.
Marquardt, D. W. (1963). An Algorithm for Least-Squares Estimation of Nonlinear Parameters. Journal of the Society for Industrial and Applied Mathematics, 11(2), 431–441. doi:10.1137/0111030.
Phanthuna, P., & Areepong, Y. (2021). Analytical solutions of arl for SAR(P)L model on a modified ewma chart. Mathematics and Statistics, 9(5), 685–696. doi:10.13189/ms.2021.090508.
Benaroya, H., Mi Han, S., & Nagurka, M. (2005). Probability Models in Engineering and Science. Taylor & Francis, Milton Park, United Kingdom. doi:10.4324/9781003002314.
Montgomery, D. C. (2020). Introduction to statistical quality control. John Wiley & Sons, Hoboken, United States.
Berberian, S. K. (2012). A first course in real analysis. Springer Science & Business Media, New York, United States. doi:10.1007/978-1-4419-8548-4.
DOI: 10.28991/ESJ-2023-SPER-012
Refbacks
- There are currently no refbacks.
Copyright (c) 2022 Yupaporn Areepong, Rapin Sunthornwat