Probabilistic Analysis Depending on the Distance from A COVID-19 Outbreak

Yupaporn Areepong, Rapin Sunthornwat

Abstract


COVID-19 has been affecting human beings since the end of 2019. Studying the characteristics of a COVID-19 outbreak is significant because it will add to the knowledge that is necessary for protecting the general public and controlling future viral outbreaks. The aims of the present research are to analyze COVID-19 outbreaks in Thailand depending on the distance from the outbreak center by using a differential equation, to construct a probability density function from the solution of the differential equation, and to prove the theorem for the probability density function depending on the distance from the outbreak. The least-squares-error method is adopted to estimate the parameters of the function describing the COVID-19 outbreak. Moreover, a cumulative distribution function, a quantile function, a sojourn function, a hazard function, the median, the expected value, variance, skewness, and kurtosis are derived, and their practicability is shown. Applying the exponentially weighted moving average control chart to monitor a COVID-19 outbreak based on distance is proposed and compared with monitoring the COVID-19 outbreak based on time. The results show that using the former more quickly detected the out-of-control first passage time of the COVID-19 outbreak than the latter.

 

Doi: 10.28991/ESJ-2023-SPER-012

Full Text: PDF


Keywords


COVID-19 Outbreak; Predictive Model; Probabilistic Analysis; Control Chart; First Passage Time.

References


Areepong, Y., & Sunthornwat, R. (2020). Predictive Models for Cumulative Confirmed COVID-19 Cases by Day in Southeast Asia. Computer Modeling in Engineering & Sciences, 125(3), 927–942. doi:10.32604/cmes.2020.012323.

Wang, P., Zheng, X., Li, J., & Zhu, B. (2020). Prediction of epidemic trends in COVID-19 with logistic model and machine learning technics. Chaos, Solitons and Fractals, 139(110058). doi:10.1016/j.chaos.2020.110058.

Sunthornwat, R., & Areepong, Y. (2021). Predictive Model for the Total Daily Covid-19 Cases with Herd Immunity Policy. Chiang Mai University Journal of Natural Sciences, 20(1). doi:10.12982/CMUJNS.2021.016.

Brunner, N., & Kühleitner, M. (2021). Bertalanffy-Pütter models for the first wave of the COVID-19 outbreak. Infectious Disease Modelling, 6(2021), 532–544. doi:10.1016/j.idm.2021.03.003.

El Aferni, A., Guettari, M., & Tajouri, T. (2021). Mathematical model of Boltzmann’s sigmoidal equation applicable to the spreading of the coronavirus (Covid-19) waves. Environmental Science and Pollution Research, 28(30), 40400–40408. doi:10.1007/s11356-020-11188-y.

Niazkar, M., Eryılmaz Türkkan, G., Niazkar, H. R., & Türkkan, Y. A. (2020). Assessment of Three Mathematical Prediction Models for Forecasting the COVID-19 Outbreak in Iran and Turkey. Computational and Mathematical Methods in Medicine, 2020, 1–13. doi:10.1155/2020/7056285.

Khan, N., Arshad, A., Azam, M., Al-marshadi, A. H., & Aslam, M. (2022). Modeling and forecasting the total number of cases and deaths due to pandemic. Journal of Medical Virology, 94(4), 1592–1605. doi:10.1002/jmv.27506.

Khan, M. A., Khan, R., Algarni, F., Kumar, I., Choudhary, A., & Srivastava, A. (2022). Performance evaluation of regression models for COVID-19: A statistical and predictive perspective. Ain Shams Engineering Journal, 13(2), 101574. doi:10.1016/j.asej.2021.08.016.

Ogundokun, R. O., Lukman, A. F., Kibria, G. B. M., Awotunde, J. B., & Aladeitan, B. B. (2020). Predictive modelling of COVID-19 confirmed cases in Nigeria. Infectious Disease Modelling, 5, 543–548. doi:10.1016/j.idm.2020.08.003.

Joshi, H., Azarudheen, S., Nagaraja, M. S., & Chandraketu, S. (2022). On the quick estimation of probability of recovery from COVID-19 during first wave of epidemic in India: a logistic regression approach. Statistics in Transition New Series, 23(2), 197–208. doi:10.2478/stattrans-2022-0024.

Bhangu, K. S., Sandhu, J. K., & Sapra, L. (2022). Time series analysis of COVID-19 cases. World Journal of Engineering, 19(1), 40–48. doi:10.1108/WJE-09-2020-0431.

Doornik, J. A., Castle, J. L., & Hendry, D. F. (2021). Modeling and forecasting the COVID-19 pandemic time-series data. Social Science Quarterly, 102(5), 2070–2087. doi:10.1111/ssqu.13008.

Wang, Y., Yan, Z., Wang, D., Yang, M., Li, Z., Gong, X., Wu, D., Zhai, L., Zhang, W., & Wang, Y. (2022). Prediction and analysis of COVID-19 daily new cases and cumulative cases: times series forecasting and machine learning models. BMC Infectious Diseases, 22(1), 495. doi:10.1186/s12879-022-07472-6.

Shinde, G. R., Kalamkar, A. B., Mahalle, P. N., Dey, N., Chaki, J., & Hassanien, A. E. (2020). Forecasting Models for Coronavirus Disease (COVID-19): A Survey of the State-of-the-Art. SN Computer Science, 1(4), 1-15. doi:10.1007/s42979-020-00209-9.

Ünlü, R., & Namli, E. (2020). Machine learning and classical forecasting methods based decision support systems for covid-19. Computers, Materials and Continua, 64(3), 1383–1399. doi:10.32604/cmc.2020.011335.

Kuvvetli, Y., Deveci, M., Paksoy, T., & Garg, H. (2021). A predictive analytics model for COVID-19 pandemic using artificial neural networks. Decision Analytics Journal, 1, 100007. doi:10.1016/j.dajour.2021.100007.

Lounis, M., Torrealba-Rodriguez, O., & Conde-Gutiérrez, R. A. (2021). Predictive models for COVID-19 cases, deaths and recoveries in Algeria. Results in Physics, 30, 104845. doi:10.1016/j.rinp.2021.104845.

Wang, F., Cao, L., & Song, X. (2022). Mathematical modeling of mutated COVID-19 transmission with quarantine, isolation and vaccination. Mathematical Biosciences and Engineering, 19(8), 8035–8056. doi:10.3934/mbe.2022376.

Daniel Deborah, O. (2020). Mathematical Model for the Transmission of Covid-19 with Nonlinear Forces of Infection and the Need for Prevention Measure in Nigeria. Journal of Infectious Diseases and Epidemiology, 6(5), 158. doi:10.23937/2474-3658/1510158.

Ghosh, A., Roy, S., Mondal, H., Biswas, S., & Bose, R. (2022). Mathematical modelling for decision making of lockdown during COVID-19. Applied Intelligence, 52(1), 699–715. doi:10.1007/s10489-021-02463-7.

Oke, A. S., Bada, O. I., Rasaq, G., & Adodo, V. (2022). Mathematical analysis of the dynamics of COVID-19 in Africa under the influence of asymptomatic cases and re-infection. Mathematical Methods in the Applied Sciences, 45(1), 137–149. doi:10.1002/mma.7769.

De La Sen, M., & Ibeas, A. (2020). On a Sir Epidemic Model for the COVID-19 Pandemic and the Logistic Equation. Discrete Dynamics in Nature and Society, 2020, 1-7. doi:10.1155/2020/1382870.

Zhao, H., Merchant, N. N., McNulty, A., Radcliff, T. A., Cote, M. J., Fischer, R. S. B., Sang, H., & Ory, M. G. (2021). COVID-19: Short term prediction model using daily incidence data. PLOS ONE, 16(4), e0250110. doi:10.1371/journal.pone.0250110.

Riyapan, P., Shuaib, S. E., & Intarasit, A. (2021). A mathematical model of COVID-19 pandemic: A case study of Bangkok, Thailand. Computational and Mathematical Methods in Medicine, 2021, 1-11. doi:10.1155/2021/6664483.

Šušteršič, T., Blagojević, A., Cvetković, D., Cvetković, A., Lorencin, I., Šegota, S. B., Milovanović, D., Baskić, D., Car, Z., & Filipović, N. (2021). Epidemiological Predictive Modeling of COVID-19 Infection: Development, Testing, and Implementation on the Population of the Benelux Union. Frontiers in Public Health, 9. doi:10.3389/fpubh.2021.727274.

Campillo-Funollet, E., Van Yperen, J., Allman, P., Bell, M., Beresford, W., Clay, J., Dorey, M., Evans, G., Gilchrist, K., Memon, A., Pannu, G., Walkley, R., Watson, M., & Madzvamuse, A. (2021). Predicting and forecasting the impact of local outbreaks of COVID-19: Use of SEIR-D quantitative epidemiological modelling for healthcare demand and capacity. International Journal of Epidemiology, 50(4), 1103–1113. doi:10.1093/ije/dyab106.

Khoshnaw, S. H. A., & Mohammed, A. S. (2022). Computational simulations of the effects of social distancing interventions on the COVID-19 pandemic. AIMS Bioengineering, 9(3), 239–251. doi:10.3934/bioeng.2022016.

Nguyen, D. Q., Vo, N. Q., Nguyen, T. T., Nguyen-An, K., Nguyen, Q. H., Tran, D. N., & Quan, T. T. (2022). BeCaked: An Explainable Artificial Intelligence Model for COVID-19 Forecasting. Scientific Reports, 12(1), 7969. doi:10.1038/s41598-022-11693-9.

Sunthornwat, R., & Areepong, Y. (2021). Predictive models for the number of cumulative cases for spreading coronavirus disease 2019 in the world. Engineering and Applied Science Research, 48(4), 432–445. doi:10.14456/easr.2021.46.

Worldometer. (2021). COVID-19 Coronavirus Pandemic. Available Online: https://www.worldometers.info/coronavirus/ #countries. (accessed on January 2023).

DistanceFromTo (2021). Distance Between Cities and Places. Available Online: https://www.distancefromto.net. (accessed on January 2023).

Levenberg, K. (1944). A method for the solution of certain non-linear problems in least squares. Quarterly of Applied Mathematics, 2(2), 164–168. doi:10.1090/qam/10666.

Marquardt, D. W. (1963). An Algorithm for Least-Squares Estimation of Nonlinear Parameters. Journal of the Society for Industrial and Applied Mathematics, 11(2), 431–441. doi:10.1137/0111030.

Phanthuna, P., & Areepong, Y. (2021). Analytical solutions of arl for SAR(P)L model on a modified ewma chart. Mathematics and Statistics, 9(5), 685–696. doi:10.13189/ms.2021.090508.

Benaroya, H., Mi Han, S., & Nagurka, M. (2005). Probability Models in Engineering and Science. Taylor & Francis, Milton Park, United Kingdom. doi:10.4324/9781003002314.

Montgomery, D. C. (2020). Introduction to statistical quality control. John Wiley & Sons, Hoboken, United States.

Berberian, S. K. (2012). A first course in real analysis. Springer Science & Business Media, New York, United States. doi:10.1007/978-1-4419-8548-4.


Full Text: PDF

DOI: 10.28991/ESJ-2023-SPER-012

Refbacks

  • There are currently no refbacks.


Copyright (c) 2022 Yupaporn Areepong, Rapin Sunthornwat