Development of a Technique for the Spectral Description of Curves of Complex Shape for Problems of Object Classification

Aslan Tatarkanov, Islam Alexandrov, Alexander Muranov, Abas Lampezhev

Abstract


Vascular pathology symptoms can be determined by retinal image segmentation and classification. However, the retinal images from non-invasive diagnostics have a complex structure containing tree-like vascular beds, multiple segment boundaries, false segments, and various distortions. It should be noted that complex structure images’ segmentation does not always provide a single solution. Thus, the goal is to increase the efficiency of vascular diagnostics. This study aims to develop a technique for describing the geometric properties of complexly structured image segments used for classifying vascular pathologies based on retinal images. The advantages and disadvantages of the existing methods and algorithms of segmentation were considered. The most effective use areas of the mentioned methods and algorithms are revealed. Through detecting retinal thrombosis, the algorithm's efficiency for constructing a mathematical model of an arbitrary shape segment based on the morphological processing of binary and halftone images was justified. A modified variant of this algorithm based on the spectral analysis procedure of arbitrary shape boundary curves was used for the spectral description of complex shape curves for classifying vascular pathologies based on retinal images. Two approaches have been developed. The first one allows obtaining a closing segment of the curve from a symmetric mapping of the initial parametric curves. The second involves intelligent data processing and obtaining contours of minimum thickness, forming convex sets. The results of experiments confirm the possibility of practical use of the developed technique to solve problems of vascular pathology classification based on retinal images, showing the correct forecast probability was 0.93 with all associated risk factors.

 

Doi: 10.28991/ESJ-2022-06-06-015

Full Text: PDF


Keywords


Morphological Analysis; Fourier Descriptors; Image Skeleton; Minimum Thickness Contour; Image Analysis of Eye Vessels.

References


Vitti, A. (2012). The Mumford-Shah variational model for image segmentation: An overview of the theory, implementation and use. ISPRS Journal of Photogrammetry and Remote Sensing, 69, 50–64. doi:10.1016/j.isprsjprs.2012.02.005.

Zou, L., Song, L. T., Weise, T., Wang, X. F., Huang, Q. J., Deng, R., & Wu, Z. Z. (2021). A survey on regional level set image segmentation models based on the energy functional similarity measure. Neurocomputing, 452, 606–622. doi:10.1016/j.neucom.2020.07.141.

Kao, J.-Y., Tian, D., Mansour, H., Vetro, A., & Ortega, A. (2016). Moving object segmentation using depth and optical flow in car driving sequences. 2016 IEEE International Conference on Image Processing (ICIP). doi:10.1109/icip.2016.7532309.

Lin, Y.-Y., Yu, C.-C., & Lin, C.-H. (2021). Automatically Segmentation the Car Parts and Generate a Large Car Texture Images. Proceedings of the 2nd International Conference on Deep Learning Theory and Applications. doi:10.5220/0010601301850190.

Elgar, A., & Bekhor, S. (2004). Car-Rider Segmentation According to Riding Status and Investment in Car Mobility. Transportation Research Record: Journal of the Transportation Research Board, 1894(1), 109–116. doi:10.3141/1894-12.

Martín, F., & Borges, D. (2003, June). Automatic car plate recognition using partial segmentation algorithm. IASTED conference on Signal Processing, Pattern Recognition, and Applications (SPPRA), 30 June – 2 July, 2003, Rhodes, Greece.

Awad, M. (2010). Segmentation of Satellite Images Using Self-Organizing Maps. In: Self-Organizing Maps, InTech, London, United Kingdom. doi:10.5772/9167.

Nivaggioli, A., & Randrianarivo, H. (2019). Weakly Supervised Semantic Segmentation of Satellite Images. 2019 Joint Urban Remote Sensing Event (JURSE), IEEE, Vannes, France. doi:10.1109/jurse.2019.8809060.

Im, H., & Yang, H. (2019). Analysis and Optimization of CNN-based Semantic Segmentation of Satellite Images. 2019 International Conference on Information and Communication Technology Convergence (ICTC), IEEE, Jeju, Korea. doi:10.1109/ictc46691.2019.8939782.

Nair, S. R., & Bhavathrathan, B. K. (2022). Hybrid segmentation approach to identify crash susceptible locations in large road networks. Safety Science, 145, 105515. doi:10.1016/j.ssci.2021.105515.

Badar, M., Haris, M., & Fatima, A. (2020). Application of deep learning for retinal image analysis: A review. Computer Science Review, 35, 100203. doi:10.1016/j.cosrev.2019.100203.

Jiang, H., DeBuc, D. C., Rundek, T., Lam, B. L., Wright, C. B., Shen, M., Tao, A., & Wang, J. (2013). Automated segmentation and fractal analysis of high-resolution non-invasive capillary perfusion maps of the human retina. Microvascular Research, 89, 172–175. doi:10.1016/j.mvr.2013.06.008.

Mac Grory, B., Schrag, M., Poli, S., Boisvert, C. J., … Feng, W. (2021). Structural and Functional Imaging of the Retina in Central Retinal Artery Occlusion – Current Approaches and Future Directions. Journal of Stroke and Cerebrovascular Diseases, 30(7), 105828. doi:10.1016/j.jstrokecerebrovasdis.2021.105828.

Rostami, M., Forouzandeh, S., Berahmand, K., Soltani, M., Shahsavari, M., & Oussalah, M. (2022). Gene selection for microarray data classification via multi-objective graph theoretic-based method. Artificial Intelligence in Medicine, 123, 102228. doi:10.1016/j.artmed.2021.102228.

Konrad, C., Ukas, T., Nebel, C., Arolt, V., Toga, A. W., & Narr, K. L. (2009). Defining the human hippocampus in cerebral magnetic resonance images-An overview of current segmentation protocols. NeuroImage, 47(4), 1185–1195. doi:10.1016/j.neuroimage.2009.05.019.

Yang, M. S., Lin, K. C. R., Liu, H. C., & Lirng, J. F. (2007). Magnetic resonance imaging segmentation techniques using batch-type learning vector quantization algorithms. Magnetic Resonance Imaging, 25(2), 265–277. doi:10.1016/j.mri.2006.09.043.

Chen, Y., Zhao, B., Zhang, J., & Zheng, Y. (2014). Automatic segmentation for brain MR images via a convex optimized segmentation and bias field correction coupled model. Magnetic Resonance Imaging, 32(7), 941–955. doi:10.1016/j.mri.2014.05.003.

Zhou, Z., & Ruan, Z. (2007). Multicontext wavelet-based thresholding segmentation of brain tissues in magnetic resonance images. Magnetic Resonance Imaging, 25(3), 381–385. doi:10.1016/j.mri.2006.09.001.

Zheng, Y. (2016). Model-Based 3D Cardiac Image Segmentation with Marginal Space Learning. Medical Image Recognition, Segmentation and Parsing, Academic Press, Cambridge, Massachusetts, United States. doi:10.1016/b978-0-12-802581-9.00017-2.

Akbari, H., & Fei, B. (2012). 3D ultrasound image segmentation using wavelet support vector machines. Medical Physics, 39(6), 2972–2984. doi:10.1118/1.4709607.

Shen, H. (2009). Methods and Applications for Segmenting 3D Medical Image Data. Medical Informatics, IGI Global, Pennsylvania, United States. doi:10.4018/978-1-60566-050-9.ch087.

Bansal, M., Kumar, M., & Kumar, M. (2021). 2D object recognition: a comparative analysis of SIFT, SURF and ORB feature descriptors. Multimedia Tools and Applications, 80(12), 18839–18857. doi:10.1007/s11042-021-10646-0.

Bansal, M., Kumar, M., Kumar, M., & Kumar, K. (2021). An efficient technique for object recognition using Shi-Tomasi corner detection algorithm. Soft Computing, 25(6), 4423–4432. doi:10.1007/s00500-020-05453-y.

Berahmand, K., Mohammadi, M., Faroughi, A., & Mohammadiani, R. P. (2022). A novel method of spectral clustering in attributed networks by constructing parameter-free affinity matrix. Cluster Computing, 25(2), 869–888. doi:10.1007/s10586-021-03430-0.

Bansal, M., Kumar, M., & Kumar, M. (2021). 2D Object Recognition Techniques: State-of-the-Art Work. Archives of Computational Methods in Engineering, 28(3), 1147–1161. doi:10.1007/s11831-020-09409-1.

Monika, Kumar, M., & Kumar, M. (2021). Performance Comparison of Various Feature Extraction Methods for Object Recognition on Caltech-101 Image Dataset. Applications of Artificial Intelligence and Machine Learning. Lecture Notes in Electrical Engineering, 778, Springer, Singapore. doi:10.1007/978-981-16-3067-5_22.

Bansal, M., Kumar, M., Sachdeva, M., & Mittal, A. (2021). Transfer learning for image classification using VGG19: Caltech-101 image data set. Journal of Ambient Intelligence and Humanized Computing. doi:10.1007/s12652-021-03488-z.

Sokic, E., & Konjicija, S. (2016). Phase preserving Fourier descriptor for shape-based image retrieval. Signal Processing: Image Communication, 40, 82–96. doi:10.1016/j.image.2015.11.002.

Yang, C., & Yu, Q. (2019). Multiscale Fourier descriptor based on triangular features for shape retrieval. Signal Processing: Image Communication, 71, 110–119. doi:10.1016/j.image.2018.11.004.

Li, H., Liu, Z., Huang, Y., & Shi, Y. (2015). Quaternion generic Fourier descriptor for color object recognition. Pattern Recognition, 48(12), 3895–3903. doi:10.1016/j.patcog.2015.06.002.

El-Ghazal, A., Basir, O., & Belkasim, S. (2012). Invariant curvature-based Fourier shape descriptors. Journal of Visual Communication and Image Representation, 23(4), 622–633. doi:10.1016/j.jvcir.2012.01.011.

Shu, X., Pan, L., & Wu, X. J. (2015). Multi-scale contour flexibility shape signature for Fourier descriptor. Journal of Visual Communication and Image Representation, 26, 161–167. doi:10.1016/j.jvcir.2014.11.007.

Yadav, R. B., Nishchal, N. K., Gupta, A. K., & Rastogi, V. K. (2007). Retrieval and classification of shape-based objects using Fourier, generic Fourier, and wavelet-Fourier descriptors technique: A comparative study. Optics and Lasers in Engineering, 45(6), 695–708. doi:10.1016/j.optlaseng.2006.11.001.

Chen, C. S., Yeh, C. W., & Yin, P. Y. (2009). A novel Fourier descriptor based image alignment algorithm for automatic optical inspection. Journal of Visual Communication and Image Representation, 20(3), 178–189. doi:10.1016/j.jvcir.2008.11.003.

Mennesson, J., Saint-Jean, C., & Mascarilla, L. (2014). Color Fourier-Mellin descriptors for image recognition. Pattern Recognition Letters, 40(1), 27–35. doi:10.1016/j.patrec.2013.12.014.

Duan, W., Kuester, F., Gaudiot, J. L., & Hammami, O. (2008). Automatic object and image alignment using Fourier Descriptors. Image and Vision Computing, 26(9), 1196–1206. doi:10.1016/j.imavis.2008.01.009.

Kunttu, I., Lepistö, L., Rauhamaa, J., & Visa, A. (2006). Multiscale Fourier descriptors for defect image retrieval. Pattern Recognition Letters, 27(2), 123–132. doi:10.1016/j.patrec.2005.08.022.

Rostami, M., Berahmand, K., Nasiri, E., & Forouzande, S. (2021). Review of swarm intelligence-based feature selection methods. Engineering Applications of Artificial Intelligence, 100, 104210. doi:10.1016/j.engappai.2021.104210.


Full Text: PDF

DOI: 10.28991/ESJ-2022-06-06-015

Refbacks

  • There are currently no refbacks.


Copyright (c) 2022 Aslan Tatarkanov, Islam Alexandrov, Alexander Muranov, Abas Lampezhev