The Role of Optic Flow and Gaze Direction on Postural Control
Abstract
Doi: 10.28991/ESJ-2022-06-06-020
Full Text: PDF
Keywords
References
Lee, D. N. (2012). The optic flow field: the foundation of vision. (1980). Philosophical Transactions of the Royal Society of London. B, Biological Sciences, 290(1038), 169–179.doi:10.1098/rstb.1980.0089.
Gibson, J. J. (1950). The Perception of Visual Surfaces. The American Journal of Psychology, 63(3), 367. doi:10.2307/1418003.
Lee, D. N., Craig, C. M., & Grealy, M. A. (1999). Sensory and intrinsic coordination of movement. Proceedings of the Royal Society of London. Series B: Biological Sciences, 266(1432), 2029–2035. https://doi:10.1098/rspb.1999.0882.
Accornero, N., Capozza, M., Rinalduzzi, S., & Manfredi, G. W. (1997). Clinical multisegmental posturography: Age-related changes in stance control. Electroencephalography and Clinical Neurophysiology - Electromyography and Motor Control, 105(3), 213–219. doi:10.1016/S0924-980X(97)96567-X.
Collins, J. J., & De Luca, C. J. (1995). The effects of visual input on open-loop and closed-loop postural control mechanisms. Experimental Brain Research, 103(1), 151–163. doi:10.1007/BF00241972.
Fitzpatrick, R., Burke, D., & Gandevia, S. C. (1994). Task‐dependent reflex responses and movement illusions evoked by galvanic vestibular stimulation in standing humans. The Journal of Physiology, 478(2), 363–372. doi:10.1113/jphysiol.1994.sp020257.
Lee, D. N., & Lishman, J. R. (1975). Visual proprioceptive control of stance. Journal of human movement studies, 1, 87-95.
Dijkstra, T. M. H., Schöner, G., Giese, M. A., & Gielen, C. C. A. M. (1994). Frequency dependence of the action-perception cycle for postural control in a moving visual environment: relative phase dynamics. Biological Cybernetics, 71(6), 489–501. doi:10.1007/BF00198467.
Fitzpatrick, R., Burke, D., & Gandevia, S. C. (1996). Loop gain of reflexes controlling human standing measured with the use of postural and vestibular disturbances. Journal of Neurophysiology, 76(6), 3994–4008. doi:10.1152/jn.1996.76.6.3994.
Fitzpatrick, R. C., Gorman, R. B., Burke, D., & Gandevia, S. C. (1992). Postural proprioceptive reflexes in standing human subjects: bandwidth of response and transmission characteristics. The Journal of Physiology, 458(1), 69–83. doi:10.1113/jphysiol.1992.sp019406.
Nashner, L. M. (1976). Adapting reflexes controlling the human posture. Experimental Brain Research, 26(1), 59–72. doi:10.1007/BF00235249.
Nashner, L. M., & Wolfson, P. (1974). Influence of head position and proprioceptive cues on short latency postural reflexes evoked by galvanic stimulation of the human labyrinth. Brain Research, 67(2), 255–268. doi:10.1016/0006-8993(74)90276-5.
Dijkstra, T. M. H., Schöner, G., & Gielen, C. C. A. M. (1994). Temporal stability of the action-perception cycle for postural control in a moving visual environment. Experimental Brain Research, 97(3), 477–486. doi:10.1007/BF00241542.
Malcolm, B. R., Foxe, J. J., Joshi, S., Verghese, J., Mahoney, J. R., Molholm, S., & De Sanctis, P. (2021). Aging-related changes in cortical mechanisms supporting postural control during base of support and optic flow manipulations. European Journal of Neuroscience, 54(12), 8139–8157. doi:10.1111/ejn.15004.
Collins, J. J., & De Luca, C. J. (1993). Open-loop and closed-loop control of posture: A random-walk analysis of center-of-pressure trajectories. Experimental Brain Research, 95(2), 308–318. doi:10.1007/bf00229788.
Gatev, P., Thomas, S., Kepple, T., & Hallett, M. (1999). Feedforward ankle strategy of balance during quiet stance in adults. Journal of Physiology, 514(3), 915–928. doi:10.1111/j.1469-7793.1999.915ad.x.
Martin, O., & Gascuel, J. D. (2009). Reactive Balance Control in Immersive Visual Flows: 2D vs. 3D Virtual Stimuli. Cyberpsychology and Behavior, 12(5), 581-673.
Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., … Moher, D. (2021). The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. Systematic Reviews, 10(1). doi:10.1186/s13643-021-01626-4.
Gibson, J. J. (1994). The visual perception of objective motion and subjective movement. Psychological Review, 101(2), 318–323. doi:10.1037/0033-295X.101.2.318.
Gibson, J. J. (1958). Visually controlled locomotion and visual orientation in animals*. British Journal of Psychology, 49(3), 182–194. https://doi.org/10.1111/j.2044-8295.1958.tb00656.x.
Saito, H. A., Yukie, M., Tanaka, K., Hikosaka, K., Fukada, Y., & Iwai, E. (1986). Integraton of direction signals of image motion in the superior temporal sulcus of the Macaque monkey. Journal of Neuroscience, 6(1), 145–157. doi:10.1523/jneurosci.06-01-00145.1986.
Tanaka, K., Fukada, Y., & Saito, H. A. (1989). Underlying mechanisms of the response specificity of expansion/contraction and rotation cells in the dorsal part of the medial superior temporal area of the Macaque monkey. Journal of Neurophysiology, 62(3), 642–656. doi:10.1152/jn.1989.62.3.642.
Tanaka, K., & Saito, H. A. (1989). Analysis of motion of the visual field by direction, expansion/contraction, and rotation cells clustered in the dorsal part of the medial superior temporal area of the macaque monkey. Journal of Neurophysiology, 62(3), 626–641. doi:10.1152/jn.1989.62.3.626.
Duffy, C. J., & Wurtz, R. H. (1991). Sensitivity of MST neurons to optic flow stimuli. I. A continuum of response selectivity to large-field stimuli. Journal of Neurophysiology, 65(6), 1329–1345. doi:10.1152/jn.1991.65.6.1329.
Duffy, C. J., & Wurtz, R. H. (1991). Sensitivity of MST neurons to optic flow stimuli. II. Mechanisms of response selectivity revealed by small-field stimuli. Journal of Neurophysiology, 65(6), 1346–1359. doi:10.1152/jn.1991.65.6.1346.
Andersen, R. A., Asanuma, C., Essick, G., & Siegel, R. M. (1990). Corticocortical connections of anatomically and physiologically defined subdivisions within the inferior parietal lobule. Journal of Comparative Neurology, 296(1), 65–113. doi:10.1002/cne.902960106.
Anderson, K. C., & Siegel, R. M. (2005). Three-dimensional structure-from-motion selectivity in the anterior superior temporal polysensory area, STPa, of the behaving monkey. Cerebral Cortex, 15(9), 1299–1307. doi:10.1093/cercor/bhi013.
Hietanen, J. K., & Perrett, D. I. (1996). A comparison of visual responses to object- and ego-motion in the macaque superior temporal polysensory area. Experimental Brain Research, 108(2), 341–345. doi:10.1007/BF00228108.
Raffi, M., Squatrito, S., & Maioli, M. G. (2002). Neuronal responses to optic flow in the monkey parietal area PEc. Cerebral Cortex, 12(6), 639–646. doi:10.1093/cercor/12.6.639.
Raffi, M., & Siegel, R. M. (2007). A functional architecture of optic flow in the inferior parietal lobule of the behaving monkey. PLoS ONE, 2(2). doi:10.1371/journal.pone.0000200.
Siegel, R. M., & Read, H. L. (1997). Analysis of optic flow in the monkey parietal area 7a. Cerebral Cortex, 7(4), 327–346. doi:10.1093/cercor/7.4.327.
Duhamel, J. R., Colby, C. L., & Goldberg, M. E. (1998). Ventral intraparietal area of the macaque: Congruent visual and somatic response properties. Journal of Neurophysiology, 79(1), 126–136. doi:10.1152/jn.1998.79.1.126.
Chen, X., DeAngelis, G. C., & Angelaki, D. E. (2013). Eye-centered representation of optic flow tuning in the ventral intraparietal area. Journal of Neuroscience, 33(47), 18574–18582. doi:10.1523/JNEUROSCI.2837-13.2013.
Merchant, H., Battaglia-Mayer, A., & Georgopoulos, A. P. (2001). Effects of optic flow in motor cortex and area 7a. Journal of Neurophysiology, 86(4), 1937–1954. doi:10.1152/jn.2001.86.4.1937.
Chen, A., de Angelis, G. C., & Angelaki, D. E. (2011). Convergence of vestibular and visual self-motion signals in an area of the posterior sylvian fissure. Journal of Neuroscience, 31(32), 11617–11627. doi:10.1523/JNEUROSCI.1266-11.2011.
Yakusheva, T. A., Blazquez, P. M., Chen, A., & Angelaki, D. E. (2013). Spatiotemporal properties of optic flow and vestibular tuning in the cerebellar nodulus and uvula. Journal of Neuroscience, 33(38), 15145–15160. doi:10.1523/JNEUROSCI.2118-13.2013.
Greenlee, M. W. (2000). Human cortical areas underlying the perception of optic flow: Brain imaging studies. International Review of Neurobiology, 44, 269–292. doi:10.1016/s0074-7742(08)60746-1.
Tootell, R. B. H., Reppas, J. B., Kwong, K. K., Malach, R., Born, R. T., Brady, T. J., Rosen, B. R., & Belliveau, J. W. (1995). Functional analysis of human MT and related visual cortical areas using magnetic resonance imaging. Journal of Neuroscience, 15(4), 3215–3230. doi:10.1523/jneurosci.15-04-03215.1995.
Morrone, M. C., Tosetti, M., Montanaro, D., Fiorentini, A., Cioni, G., & Burr, D. C. (2000). A cortical area that responds specifically to optic flow, revealed by fMRI. Nature Neuroscience, 3(12), 1322–1328. doi:10.1038/81860.
Pitzalis, S., Sdoia, S., Bultrini, A., Committeri, G., Di Russo, F., Fattori, P., Galletti, C., & Galati, G. (2013). Selectivity to Translational Egomotion in Human Brain Motion Areas. PLoS ONE, 8(4). doi:10.1371/journal.pone.0060241.
Bremmer, F., Schlack, A., Shah, N. J., Zafiris, O., Kubischik, M., Hoffmann, K. P., Zilles, K., & Fink, G. R. (2001). Polymodal motion processing in posterior parietal and premotor cortex: A human fMRI study strongly implies equivalencies between humans and monkeys. Neuron, 29(1), 287–296. doi:10.1016/S0896-6273(01)00198-2.
Pitzalis, S., Serra, C., Sulpizio, V., Di Marco, S., Fattori, P., Galati, G., & Galletti, C. (2019). A putative human homologue of the macaque area PEc. NeuroImage, 202(116092). doi:10.1016/j.neuroimage.2019.116092.
Claeys, K. G., Lindsey, D. T., De Schutter, E., & Orban, G. A. (2003). A higher order motion region in human inferior parietal lobule: Evidence from fMRI. Neuron, 40(3), 631–642. doi:10.1016/S0896-6273(03)00590-7.
Cardin, V., & Smith, A. T. (2010). Sensitivity of human visual and vestibular cortical regions to egomotion-compatible visual stimulation. Cerebral Cortex, 20(8), 1964–1973. doi:10.1093/cercor/bhp268.
Pitzalis, S., Sereno, M. I., Committeri, G., Fattori, P., Galati, G., Patria, F., & Galletti, C. (2010). Human V6: The medial motion area. Cerebral Cortex, 20(2), 411–424. doi:10.1093/cercor/bhp112.
Pitzalis, S., Hadj-Bouziane, F., Dal Bò, G., Guedj, C., Strappini, F., Meunier, M., Farnè, A., Fattori, P., & Galletti, C. (2021). Optic flow selectivity in the macaque parieto-occipital sulcus. Brain Structure and Function, 226(9), 2911–2930. doi:10.1007/s00429-021-02293-w.
Andersen, R. A. (1989). Visual and eye movement functions of the posterior parietal cortex. Annual Review of Neuroscience, 12, 377–403. doi:10.1146/annurev.ne.12.030189.002113.
Andersen, R. A., Martyn Bracewell, R., Barash, S., Gnadt, J. W., & Fogassi, L. (1990). Eye position effects on visual, memory, and saccade-related activity in areas LIP and 7a of macaque. Journal of Neuroscience, 10(4), 1176–1196. doi:10.1523/jneurosci.10-04-01176.1990.
Andersen, R. A., Essick, G. K., & Siegel, R. M. (1987). Neurons of area 7 activated by both visual stimuli and oculomotor behavior. Experimental Brain Research, 67(2), 316–322. doi:10.1007/BF00248552.
Bremmer, F., Graf, W., Hamed, S. B., & Duhamel, J.-R. (1999). Eye position encoding in the macaque ventral intraparietal area (VIP). NeuroReport, 10(4), 873–878. doi:10.1097/00001756-199903170-00037.
Bremmer, F., Ilg, U. J., Thiele, A., Distler, C., & Hoffmann, K. P. (1997). Eye position effects in monkey cortex. I. Visual and pursuit-related activity in extrastriate areas MT and MST. Journal of Neurophysiology, 77(2), 944–961. doi:10.1152/jn.1997.77.2.944.
Raffi, M., Squatrito, S., & Maioli, M. G. (2007). Gaze and smooth pursuit signals interact in parietal area 7m of the behaving monkey. Experimental Brain Research, 182(1), 35–46. doi:10.1007/s00221-007-0967-3.
Inaba, N., & Kawano, K. (2016). Eye position effects on the remapped memory trace of visual motion in cortical area MST. Scientific Reports, 6(22013). doi:10.1038/srep22013.
Siegel, R. M., Raffi, M., Phinney, R. E., Turner, J. A., & Jandó, G. (2003). Functional architecture of eye position gain fields in visual association cortex of behaving monkey. Journal of Neurophysiology, 90(2), 1279–1294. doi:10.1152/jn.01179.2002.
Raffi, M., Ballabeni, A., Maioli, M. G., & Squatrito, S. (2008). Neuronal responses in macaque area PEc to saccades and eye position. Neuroscience, 156(3), 413–424. doi:10.1016/j.neuroscience.2008.08.018.
Raffi, M., Persiani, M., Piras, A., & Squatrito, S. (2014). Optic flow neurons in area PEc integrate eye and head position signals. Neuroscience Letters, 568, 23–28. doi:10.1016/j.neulet.2014.03.042.
Royden, C. S., Banks, M. S., & Crowell, J. A. (1992). The perception of heading during eye movements. Nature, 360(6404), 583–585. doi:10.1038/360583a0.
Royden, C. S., Crowell, J. A., & Banks, M. S. (1994). Estimating heading during eye movements. Vision Research, 34(23), 3197–3214. doi:10.1016/0042-6989(94)90084-1.
Knöll, J., Pillow, J. W., & Huk, A. C. (2018). Lawful tracking of visual motion in humans, macaques, and marmosets in a naturalistic, continuous, and untrained behavioral context. Proceedings of the National Academy of Sciences, 115(44). doi:10.1073/pnas.1807192115.
Chow, H. M., Knöll, J., Madsen, M., & Spering, M. (2021). Look where you go: Characterizing eye movements toward optic flow. Journal of Vision, 21(3), 19. doi:10.1167/jov.21.3.19.
Haarmeier, T., Bunjes, F., Lindner, A., Berret, E., & Thier, P. (2001). Optimizing visual motion perception during eye movements. Neuron, 32(3), 527–535. doi:10.1016/S0896-6273(01)00486-X.
Kuang, S., Deng, H., & Zhang, T. (2020). Adaptive heading performance during self-motion perception. PsyCh Journal, 9(3), 295–305. doi:10.1002/pchj.330.
Durant, S., & Zanker, J. M. (2020). The combined effect of eye movements improve head centred local motion information during walking. PLoS ONE, 15(1). doi:10.1371/journal.pone.0228345.
Clemens, I. A. H., Selen, L. P. J., Pomante, A., Macneilage, P. R., & Medendorp, W. P. (2017). Eye movements in darkness modulate self-motion perception. ENeuro, 4(1). doi:10.1523/ENEURO.0211-16.2016.
Aruin, A. S., Ota, T., & Latash, M. L. (2001). Anticipatory postural adjustments associated with lateral and rotational perturbations during standing. Journal of Electromyography and Kinesiology, 11(1), 39–51. doi:10.1016/S1050-6411(00)00034-1.
Morasso, P. G., Baratto, L., Capra, R., & Spada, G. (1999). Internal models in the control of posture. Neural Networks, 12(7–8), 1173–1180. doi:10.1016/S0893-6080(99)00058-1.
Riccio, G. E., & McDonald, V. (1998, November). Methods for investigating adaptive postural control. Proceedings of the Satellite meeting to the Society for Neuroscience: Identifying control mechanisms for postural behaviors, November, 1998, Los Angles, United States.
Baratto, L., Morasso, P. G., Re, C., & Spada, G. (2002). A new look at posturographic analysis in the clinical context: sway-density versus other parameterization techniques. Motor Control, 6(3), 246–270. doi:10.1123/mcj.6.3.246.
Bronstein, A. M., Hood, J. D., Gresty, M. A., & Panagi, C. (1990). Visual control of balance in cerebellar and parkinsonian syndromes. Brain, 113(3), 767–779. doi:10.1093/brain/113.3.767.
van Asten, W. N. J. C., Gielen, C. C. A. M., & van der Gon, J. J. D. (1988). Postural adjustments induced by simulated motion of differently structured environments. Experimental Brain Research, 73(2), 371–383. doi:10.1007/BF00248230.
Peterka, R. J. (2002). Sensorimotor integration in human postural control. Journal of Neurophysiology, 88(3), 1097–1118. doi:10.1152/jn.2002.88.3.1097.
Blakemore, S. J., & Sirigu, A. (2003). Action prediction in the cerebellum and in the parietal lobe. Experimental Brain Research, 153(2), 239–245. doi:10.1007/s00221-003-1597-z.
Van Der Kooij, H., Jacobs, R., Koopman, B., & Van Der Helm, F. (2001). An adaptive model of sensory integration in a dynamic environment applied to human stance control. Biological Cybernetics, 84(2), 103–115. doi:10.1007/s004220000196.
Musolino, M. C., Loughlin, P. J., Sparto, P. J., & Redfern, M. S. (2006). Spectrally similar periodic and non-periodic optic flows evoke different postural sway responses. Gait and Posture, 23(2), 180–188. doi:10.1016/j.gaitpost.2005.02.008.
Ishida, A., & Imai, S. (1980). Responses of the posture-control system to pseudorandom acceleration disturbances. Medical & Biological Engineering & Computing, 18(4), 433–438. doi:10.1007/BF02443313.
Johansson, R., & Magnusson, M. (1989). Identification of human postural dynamics. Proceedings. ICCON IEEE International Conference on Control and Applications. doi:10.1109/iccon.1989.770644.
Peterka, R. J., & Loughlin, P. J. (2004). Dynamic Regulation of Sensorimotor Integration in Human Postural Control. Journal of Neurophysiology, 91(1), 410–423. doi:10.1152/jn.00516.2003.
Winter, D. A. (1995). Human balance and posture control during standing and walking. Gait and Posture, 3(4), 193–214. doi:10.1016/0966-6362(96)82849-9.
Lee, D. N., & Aronson, E. (1974). Visual proprioceptive control of standing in human infants. Perception & Psychophysics, 15(3), 529–532. doi:10.3758/BF03199297.
Persiani, M., Piras, A., Squatrito, S., & Raffi, M. (2015). Laterality of Stance during Optic Flow Stimulation in Male and Female Young Adults. BioMed Research International, 2015(542645). doi:10.1155/2015/542645.
Piras, A., Raffi, M., Perazzolo, M., & Squatrito, S. (2018). Influence of heading perception in the control of posture. Journal of Electromyography and Kinesiology, 39, 89–94. doi:10.1016/j.jelekin.2018.02.001.
Raffi, M., Piras, A., Persiani, M., Perazzolo, M., & Squatrito, S. (2017). Angle of gaze and optic flow direction modulate body sway. Journal of Electromyography and Kinesiology, 35, 61–68. doi:10.1016/j.jelekin.2017.05.008.
Piras, A., Perazzolo, M., Scalinci, S. Z., & Raffi, M. (2022). The effect of diabetic retinopathy on standing posture during optic flow stimulation. Gait and Posture, 95, 242–248. doi:10.1016/j.gaitpost.2020.10.020.
Piras, A., Trofè, A., Meoni, A., & Raffi, M. (2022). Influence of radial optic flow stimulation on static postural balance in Parkinson’s disease: A preliminary study. Human Movement Science, 81. doi:10.1016/j.humov.2021.102905.
Stoffregen, T. A. (1985). Flow Structure Versus Retinal Location in the Optical Control of Stance. Journal of Experimental Psychology: Human Perception and Performance, 11(5), 554–565. doi:10.1037/0096-1523.11.5.554.
Kiemel, T., Oie, K. S., & Jeka, J. J. (2002). Multisensory fusion and the stochastic structure of postural sway. Biological Cybernetics, 87(4), 262–277. doi:10.1007/s00422-002-0333-2.
Stoffregen, T. A. (1986). The role of optical velocity in the control of stance. Perception & Psychophysics, 39(5), 355–360. doi:10.3758/BF03203004.
Lestienne, F., Soechting, J., & Berthoz, A. (1977). Postural readjustments induced by linear motion of visual scenes. Experimental Brain Research, 28(3–4), 363–384. doi:10.1007/BF00235717.
Brandt, T., Dichgans, J., & Koenig, E. (1973). Differential effects of central versus peripheral vision on egocentric and exocentric motion perception. Experimental Brain Research, 16(5), 476–491. doi:10.1007/BF00234474.
Stoffregen, T. A., Schmuckler, M. A., & Gibson, E. J. (1987). Use of central and peripheral optical flow in stance and locomotion in young walkers. Perception, 16(1), 113–119. doi:10.1068/p160113.
Peterka, R. J., & Benolken, M. S. (1995). Role of somatosensory and vestibular cues in attenuating visually induced human postural sway. Experimental Brain Research, 105(1), 101–110. doi:10.1007/BF00242186.
Raffi, M., & Piras, A. (2019). Investigating the crucial role of optic flow in postural control: Central vs. peripheral visual field. Applied Sciences (Switzerland), 9(5). doi:10.3390/app9050934.
Bonci, C. M. (1999). Assessment and evaluation of predisposing factors to anterior cruciate ligament injury. Journal of athletic training, 34(2), 155.
Fujimoto, K., & Ashida, H. (2020). Different Head-Sway Responses to Optic Flow in Sitting and Standing With a Head-Mounted Display. Frontiers in Psychology, 11(577305). doi:10.3389/fpsyg.2020.577305.
Obereisenbuchner, F., Dowsett, J., & Taylor, P. C. J. (2021). Self-initiation Inhibits the Postural and Electrophysiological Responses to Optic Flow and Button Pressing. Neuroscience, 470, 37–51. doi:10.1016/j.neuroscience.2021.07.003.
Schreiber, K. M., Hillis, J. M., Filippini, H. R., Schor, C. M., & Banks, M. S. (2008). The surface of the empirical horopter. Journal of Vision, 8(3). doi:10.1167/8.3.7.
Harris, L. R., Carnevale, M. J., D’Amour, S., Fraser, L. E., Harrar, V., Hoover, A. E. N., Mander, C., & Pritchett, L. M. (2015). How our body influences our perception of the world. Frontiers in Psychology, 6. doi:10.3389/fpsyg.2015.00819.
Roll, J.-P., Vedel, J.-P., & Roll, R. (1989). Chapter 10 Eye, head and skeletal muscle spindle feedback in the elaboration of body references. Afferent Control of Posture and Locomotion, 113–123, Elsevier, Amsterdam, Netherlands. doi:10.1016/s0079-6123(08)62204-9.
Roll, R., Velay, J. L., & Roll, J. P. (1991). Eye and neck proprioceptive messages contribute to the spatial coding of retinal input in visually oriented activities. Experimental Brain Research, 85(2). doi:10.1007/bf00229419.
Velay, J. L., Roll, R., Lennerstrand, G., & Roll, J. P. (1994). Eye proprioception and visual localization in humans: Influence of ocular dominance and visual context. Vision Research, 34(16), 2169–2176. doi:10.1016/0042-6989(94)90325-5.
Schubert, M., Bohner, C., Berger, W., Sprundel, M. V., & Duysens, J. E. J. (2003). The role of vision in maintaining heading direction: Effects of changing gaze and optic flow on human gait. Experimental Brain Research, 150(2), 163–173. doi:10.1007/s00221-003-1390-z.
Jeschke, A. M., de Groot, L. E., van der Woude, L. H. V., Oude Lansink, I. L. B., van Kouwenhove, L., & Hijmans, J. M. (2019). Gaze direction affects walking speed when using a self-paced treadmill with a virtual reality environment. Human Movement Science, 67. doi:10.1016/j.humov.2019.102498.
DOI: 10.28991/ESJ-2022-06-06-020
Refbacks
- There are currently no refbacks.