The Role of Optic Flow and Gaze Direction on Postural Control

Milena Raffi, Michela Persiani, Alessandro Piras

Abstract


Objective: The observers use the optic flow to control self-motion. However, the current state of knowledge indicates that it is difficult to understand how optic flow is used by the visual system without a direct measurement of the changes in the flow patterns caused by eye movements during natural behaviour. The purpose of this literature review is to highlight the importance of the integration between optic flow and eye movements for postural control. Methods: A literature review of the electronic papers through July 2022 was independently performed by three investigators. The selection of the studies was made by a search on PubMed, Scopus, and Google Scholar with two groups of selected keywords. We excluded papers performed on subjects with pathologies, children, and the elderly. Results: The results of this literature analysis highlight that eye movements are required to drive visual motion processing and heading perception in both static and dynamic contexts. Conclusion: Although we now know many neural mechanisms that process heading direction from the optic flow field, a consideration of optic flow patterns relative to gaze direction provides more detailed information on how the retinal flow field is used to control body balance.

 

Doi: 10.28991/ESJ-2022-06-06-020

Full Text: PDF


Keywords


Optic Flow; Eye Movements; Heading Perception; Visual Perception; Self-Motion; Body Sway; Posture; Quite Stance; Eye Position; Motor System.

References


Lee, D. N. (2012). The optic flow field: the foundation of vision. (1980). Philosophical Transactions of the Royal Society of London. B, Biological Sciences, 290(1038), 169–179.doi:10.1098/rstb.1980.0089.

Gibson, J. J. (1950). The Perception of Visual Surfaces. The American Journal of Psychology, 63(3), 367. doi:10.2307/1418003.

Lee, D. N., Craig, C. M., & Grealy, M. A. (1999). Sensory and intrinsic coordination of movement. Proceedings of the Royal Society of London. Series B: Biological Sciences, 266(1432), 2029–2035. https://doi:10.1098/rspb.1999.0882.

Accornero, N., Capozza, M., Rinalduzzi, S., & Manfredi, G. W. (1997). Clinical multisegmental posturography: Age-related changes in stance control. Electroencephalography and Clinical Neurophysiology - Electromyography and Motor Control, 105(3), 213–219. doi:10.1016/S0924-980X(97)96567-X.

Collins, J. J., & De Luca, C. J. (1995). The effects of visual input on open-loop and closed-loop postural control mechanisms. Experimental Brain Research, 103(1), 151–163. doi:10.1007/BF00241972.

Fitzpatrick, R., Burke, D., & Gandevia, S. C. (1994). Task‐dependent reflex responses and movement illusions evoked by galvanic vestibular stimulation in standing humans. The Journal of Physiology, 478(2), 363–372. doi:10.1113/jphysiol.1994.sp020257.

Lee, D. N., & Lishman, J. R. (1975). Visual proprioceptive control of stance. Journal of human movement studies, 1, 87-95.

Dijkstra, T. M. H., Schöner, G., Giese, M. A., & Gielen, C. C. A. M. (1994). Frequency dependence of the action-perception cycle for postural control in a moving visual environment: relative phase dynamics. Biological Cybernetics, 71(6), 489–501. doi:10.1007/BF00198467.

Fitzpatrick, R., Burke, D., & Gandevia, S. C. (1996). Loop gain of reflexes controlling human standing measured with the use of postural and vestibular disturbances. Journal of Neurophysiology, 76(6), 3994–4008. doi:10.1152/jn.1996.76.6.3994.

Fitzpatrick, R. C., Gorman, R. B., Burke, D., & Gandevia, S. C. (1992). Postural proprioceptive reflexes in standing human subjects: bandwidth of response and transmission characteristics. The Journal of Physiology, 458(1), 69–83. doi:10.1113/jphysiol.1992.sp019406.

Nashner, L. M. (1976). Adapting reflexes controlling the human posture. Experimental Brain Research, 26(1), 59–72. doi:10.1007/BF00235249.

Nashner, L. M., & Wolfson, P. (1974). Influence of head position and proprioceptive cues on short latency postural reflexes evoked by galvanic stimulation of the human labyrinth. Brain Research, 67(2), 255–268. doi:10.1016/0006-8993(74)90276-5.

Dijkstra, T. M. H., Schöner, G., & Gielen, C. C. A. M. (1994). Temporal stability of the action-perception cycle for postural control in a moving visual environment. Experimental Brain Research, 97(3), 477–486. doi:10.1007/BF00241542.

Malcolm, B. R., Foxe, J. J., Joshi, S., Verghese, J., Mahoney, J. R., Molholm, S., & De Sanctis, P. (2021). Aging-related changes in cortical mechanisms supporting postural control during base of support and optic flow manipulations. European Journal of Neuroscience, 54(12), 8139–8157. doi:10.1111/ejn.15004.

Collins, J. J., & De Luca, C. J. (1993). Open-loop and closed-loop control of posture: A random-walk analysis of center-of-pressure trajectories. Experimental Brain Research, 95(2), 308–318. doi:10.1007/bf00229788.

Gatev, P., Thomas, S., Kepple, T., & Hallett, M. (1999). Feedforward ankle strategy of balance during quiet stance in adults. Journal of Physiology, 514(3), 915–928. doi:10.1111/j.1469-7793.1999.915ad.x.

Martin, O., & Gascuel, J. D. (2009). Reactive Balance Control in Immersive Visual Flows: 2D vs. 3D Virtual Stimuli. Cyberpsychology and Behavior, 12(5), 581-673.

Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., … Moher, D. (2021). The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. Systematic Reviews, 10(1). doi:10.1186/s13643-021-01626-4.

Gibson, J. J. (1994). The visual perception of objective motion and subjective movement. Psychological Review, 101(2), 318–323. doi:10.1037/0033-295X.101.2.318.

Gibson, J. J. (1958). Visually controlled locomotion and visual orientation in animals*. British Journal of Psychology, 49(3), 182–194. https://doi.org/10.1111/j.2044-8295.1958.tb00656.x.

Saito, H. A., Yukie, M., Tanaka, K., Hikosaka, K., Fukada, Y., & Iwai, E. (1986). Integraton of direction signals of image motion in the superior temporal sulcus of the Macaque monkey. Journal of Neuroscience, 6(1), 145–157. doi:10.1523/jneurosci.06-01-00145.1986.

Tanaka, K., Fukada, Y., & Saito, H. A. (1989). Underlying mechanisms of the response specificity of expansion/contraction and rotation cells in the dorsal part of the medial superior temporal area of the Macaque monkey. Journal of Neurophysiology, 62(3), 642–656. doi:10.1152/jn.1989.62.3.642.

Tanaka, K., & Saito, H. A. (1989). Analysis of motion of the visual field by direction, expansion/contraction, and rotation cells clustered in the dorsal part of the medial superior temporal area of the macaque monkey. Journal of Neurophysiology, 62(3), 626–641. doi:10.1152/jn.1989.62.3.626.

Duffy, C. J., & Wurtz, R. H. (1991). Sensitivity of MST neurons to optic flow stimuli. I. A continuum of response selectivity to large-field stimuli. Journal of Neurophysiology, 65(6), 1329–1345. doi:10.1152/jn.1991.65.6.1329.

Duffy, C. J., & Wurtz, R. H. (1991). Sensitivity of MST neurons to optic flow stimuli. II. Mechanisms of response selectivity revealed by small-field stimuli. Journal of Neurophysiology, 65(6), 1346–1359. doi:10.1152/jn.1991.65.6.1346.

Andersen, R. A., Asanuma, C., Essick, G., & Siegel, R. M. (1990). Corticocortical connections of anatomically and physiologically defined subdivisions within the inferior parietal lobule. Journal of Comparative Neurology, 296(1), 65–113. doi:10.1002/cne.902960106.

Anderson, K. C., & Siegel, R. M. (2005). Three-dimensional structure-from-motion selectivity in the anterior superior temporal polysensory area, STPa, of the behaving monkey. Cerebral Cortex, 15(9), 1299–1307. doi:10.1093/cercor/bhi013.

Hietanen, J. K., & Perrett, D. I. (1996). A comparison of visual responses to object- and ego-motion in the macaque superior temporal polysensory area. Experimental Brain Research, 108(2), 341–345. doi:10.1007/BF00228108.

Raffi, M., Squatrito, S., & Maioli, M. G. (2002). Neuronal responses to optic flow in the monkey parietal area PEc. Cerebral Cortex, 12(6), 639–646. doi:10.1093/cercor/12.6.639.

Raffi, M., & Siegel, R. M. (2007). A functional architecture of optic flow in the inferior parietal lobule of the behaving monkey. PLoS ONE, 2(2). doi:10.1371/journal.pone.0000200.

Siegel, R. M., & Read, H. L. (1997). Analysis of optic flow in the monkey parietal area 7a. Cerebral Cortex, 7(4), 327–346. doi:10.1093/cercor/7.4.327.

Duhamel, J. R., Colby, C. L., & Goldberg, M. E. (1998). Ventral intraparietal area of the macaque: Congruent visual and somatic response properties. Journal of Neurophysiology, 79(1), 126–136. doi:10.1152/jn.1998.79.1.126.

Chen, X., DeAngelis, G. C., & Angelaki, D. E. (2013). Eye-centered representation of optic flow tuning in the ventral intraparietal area. Journal of Neuroscience, 33(47), 18574–18582. doi:10.1523/JNEUROSCI.2837-13.2013.

Merchant, H., Battaglia-Mayer, A., & Georgopoulos, A. P. (2001). Effects of optic flow in motor cortex and area 7a. Journal of Neurophysiology, 86(4), 1937–1954. doi:10.1152/jn.2001.86.4.1937.

Chen, A., de Angelis, G. C., & Angelaki, D. E. (2011). Convergence of vestibular and visual self-motion signals in an area of the posterior sylvian fissure. Journal of Neuroscience, 31(32), 11617–11627. doi:10.1523/JNEUROSCI.1266-11.2011.

Yakusheva, T. A., Blazquez, P. M., Chen, A., & Angelaki, D. E. (2013). Spatiotemporal properties of optic flow and vestibular tuning in the cerebellar nodulus and uvula. Journal of Neuroscience, 33(38), 15145–15160. doi:10.1523/JNEUROSCI.2118-13.2013.

Greenlee, M. W. (2000). Human cortical areas underlying the perception of optic flow: Brain imaging studies. International Review of Neurobiology, 44, 269–292. doi:10.1016/s0074-7742(08)60746-1.

Tootell, R. B. H., Reppas, J. B., Kwong, K. K., Malach, R., Born, R. T., Brady, T. J., Rosen, B. R., & Belliveau, J. W. (1995). Functional analysis of human MT and related visual cortical areas using magnetic resonance imaging. Journal of Neuroscience, 15(4), 3215–3230. doi:10.1523/jneurosci.15-04-03215.1995.

Morrone, M. C., Tosetti, M., Montanaro, D., Fiorentini, A., Cioni, G., & Burr, D. C. (2000). A cortical area that responds specifically to optic flow, revealed by fMRI. Nature Neuroscience, 3(12), 1322–1328. doi:10.1038/81860.

Pitzalis, S., Sdoia, S., Bultrini, A., Committeri, G., Di Russo, F., Fattori, P., Galletti, C., & Galati, G. (2013). Selectivity to Translational Egomotion in Human Brain Motion Areas. PLoS ONE, 8(4). doi:10.1371/journal.pone.0060241.

Bremmer, F., Schlack, A., Shah, N. J., Zafiris, O., Kubischik, M., Hoffmann, K. P., Zilles, K., & Fink, G. R. (2001). Polymodal motion processing in posterior parietal and premotor cortex: A human fMRI study strongly implies equivalencies between humans and monkeys. Neuron, 29(1), 287–296. doi:10.1016/S0896-6273(01)00198-2.

Pitzalis, S., Serra, C., Sulpizio, V., Di Marco, S., Fattori, P., Galati, G., & Galletti, C. (2019). A putative human homologue of the macaque area PEc. NeuroImage, 202(116092). doi:10.1016/j.neuroimage.2019.116092.

Claeys, K. G., Lindsey, D. T., De Schutter, E., & Orban, G. A. (2003). A higher order motion region in human inferior parietal lobule: Evidence from fMRI. Neuron, 40(3), 631–642. doi:10.1016/S0896-6273(03)00590-7.

Cardin, V., & Smith, A. T. (2010). Sensitivity of human visual and vestibular cortical regions to egomotion-compatible visual stimulation. Cerebral Cortex, 20(8), 1964–1973. doi:10.1093/cercor/bhp268.

Pitzalis, S., Sereno, M. I., Committeri, G., Fattori, P., Galati, G., Patria, F., & Galletti, C. (2010). Human V6: The medial motion area. Cerebral Cortex, 20(2), 411–424. doi:10.1093/cercor/bhp112.

Pitzalis, S., Hadj-Bouziane, F., Dal Bò, G., Guedj, C., Strappini, F., Meunier, M., Farnè, A., Fattori, P., & Galletti, C. (2021). Optic flow selectivity in the macaque parieto-occipital sulcus. Brain Structure and Function, 226(9), 2911–2930. doi:10.1007/s00429-021-02293-w.

Andersen, R. A. (1989). Visual and eye movement functions of the posterior parietal cortex. Annual Review of Neuroscience, 12, 377–403. doi:10.1146/annurev.ne.12.030189.002113.

Andersen, R. A., Martyn Bracewell, R., Barash, S., Gnadt, J. W., & Fogassi, L. (1990). Eye position effects on visual, memory, and saccade-related activity in areas LIP and 7a of macaque. Journal of Neuroscience, 10(4), 1176–1196. doi:10.1523/jneurosci.10-04-01176.1990.

Andersen, R. A., Essick, G. K., & Siegel, R. M. (1987). Neurons of area 7 activated by both visual stimuli and oculomotor behavior. Experimental Brain Research, 67(2), 316–322. doi:10.1007/BF00248552.

Bremmer, F., Graf, W., Hamed, S. B., & Duhamel, J.-R. (1999). Eye position encoding in the macaque ventral intraparietal area (VIP). NeuroReport, 10(4), 873–878. doi:10.1097/00001756-199903170-00037.

Bremmer, F., Ilg, U. J., Thiele, A., Distler, C., & Hoffmann, K. P. (1997). Eye position effects in monkey cortex. I. Visual and pursuit-related activity in extrastriate areas MT and MST. Journal of Neurophysiology, 77(2), 944–961. doi:10.1152/jn.1997.77.2.944.

Raffi, M., Squatrito, S., & Maioli, M. G. (2007). Gaze and smooth pursuit signals interact in parietal area 7m of the behaving monkey. Experimental Brain Research, 182(1), 35–46. doi:10.1007/s00221-007-0967-3.

Inaba, N., & Kawano, K. (2016). Eye position effects on the remapped memory trace of visual motion in cortical area MST. Scientific Reports, 6(22013). doi:10.1038/srep22013.

Siegel, R. M., Raffi, M., Phinney, R. E., Turner, J. A., & Jandó, G. (2003). Functional architecture of eye position gain fields in visual association cortex of behaving monkey. Journal of Neurophysiology, 90(2), 1279–1294. doi:10.1152/jn.01179.2002.

Raffi, M., Ballabeni, A., Maioli, M. G., & Squatrito, S. (2008). Neuronal responses in macaque area PEc to saccades and eye position. Neuroscience, 156(3), 413–424. doi:10.1016/j.neuroscience.2008.08.018.

Raffi, M., Persiani, M., Piras, A., & Squatrito, S. (2014). Optic flow neurons in area PEc integrate eye and head position signals. Neuroscience Letters, 568, 23–28. doi:10.1016/j.neulet.2014.03.042.

Royden, C. S., Banks, M. S., & Crowell, J. A. (1992). The perception of heading during eye movements. Nature, 360(6404), 583–585. doi:10.1038/360583a0.

Royden, C. S., Crowell, J. A., & Banks, M. S. (1994). Estimating heading during eye movements. Vision Research, 34(23), 3197–3214. doi:10.1016/0042-6989(94)90084-1.

Knöll, J., Pillow, J. W., & Huk, A. C. (2018). Lawful tracking of visual motion in humans, macaques, and marmosets in a naturalistic, continuous, and untrained behavioral context. Proceedings of the National Academy of Sciences, 115(44). doi:10.1073/pnas.1807192115.

Chow, H. M., Knöll, J., Madsen, M., & Spering, M. (2021). Look where you go: Characterizing eye movements toward optic flow. Journal of Vision, 21(3), 19. doi:10.1167/jov.21.3.19.

Haarmeier, T., Bunjes, F., Lindner, A., Berret, E., & Thier, P. (2001). Optimizing visual motion perception during eye movements. Neuron, 32(3), 527–535. doi:10.1016/S0896-6273(01)00486-X.

Kuang, S., Deng, H., & Zhang, T. (2020). Adaptive heading performance during self-motion perception. PsyCh Journal, 9(3), 295–305. doi:10.1002/pchj.330.

Durant, S., & Zanker, J. M. (2020). The combined effect of eye movements improve head centred local motion information during walking. PLoS ONE, 15(1). doi:10.1371/journal.pone.0228345.

Clemens, I. A. H., Selen, L. P. J., Pomante, A., Macneilage, P. R., & Medendorp, W. P. (2017). Eye movements in darkness modulate self-motion perception. ENeuro, 4(1). doi:10.1523/ENEURO.0211-16.2016.

Aruin, A. S., Ota, T., & Latash, M. L. (2001). Anticipatory postural adjustments associated with lateral and rotational perturbations during standing. Journal of Electromyography and Kinesiology, 11(1), 39–51. doi:10.1016/S1050-6411(00)00034-1.

Morasso, P. G., Baratto, L., Capra, R., & Spada, G. (1999). Internal models in the control of posture. Neural Networks, 12(7–8), 1173–1180. doi:10.1016/S0893-6080(99)00058-1.

Riccio, G. E., & McDonald, V. (1998, November). Methods for investigating adaptive postural control. Proceedings of the Satellite meeting to the Society for Neuroscience: Identifying control mechanisms for postural behaviors, November, 1998, Los Angles, United States.

Baratto, L., Morasso, P. G., Re, C., & Spada, G. (2002). A new look at posturographic analysis in the clinical context: sway-density versus other parameterization techniques. Motor Control, 6(3), 246–270. doi:10.1123/mcj.6.3.246.

Bronstein, A. M., Hood, J. D., Gresty, M. A., & Panagi, C. (1990). Visual control of balance in cerebellar and parkinsonian syndromes. Brain, 113(3), 767–779. doi:10.1093/brain/113.3.767.

van Asten, W. N. J. C., Gielen, C. C. A. M., & van der Gon, J. J. D. (1988). Postural adjustments induced by simulated motion of differently structured environments. Experimental Brain Research, 73(2), 371–383. doi:10.1007/BF00248230.

Peterka, R. J. (2002). Sensorimotor integration in human postural control. Journal of Neurophysiology, 88(3), 1097–1118. doi:10.1152/jn.2002.88.3.1097.

Blakemore, S. J., & Sirigu, A. (2003). Action prediction in the cerebellum and in the parietal lobe. Experimental Brain Research, 153(2), 239–245. doi:10.1007/s00221-003-1597-z.

Van Der Kooij, H., Jacobs, R., Koopman, B., & Van Der Helm, F. (2001). An adaptive model of sensory integration in a dynamic environment applied to human stance control. Biological Cybernetics, 84(2), 103–115. doi:10.1007/s004220000196.

Musolino, M. C., Loughlin, P. J., Sparto, P. J., & Redfern, M. S. (2006). Spectrally similar periodic and non-periodic optic flows evoke different postural sway responses. Gait and Posture, 23(2), 180–188. doi:10.1016/j.gaitpost.2005.02.008.

Ishida, A., & Imai, S. (1980). Responses of the posture-control system to pseudorandom acceleration disturbances. Medical & Biological Engineering & Computing, 18(4), 433–438. doi:10.1007/BF02443313.

Johansson, R., & Magnusson, M. (1989). Identification of human postural dynamics. Proceedings. ICCON IEEE International Conference on Control and Applications. doi:10.1109/iccon.1989.770644.

Peterka, R. J., & Loughlin, P. J. (2004). Dynamic Regulation of Sensorimotor Integration in Human Postural Control. Journal of Neurophysiology, 91(1), 410–423. doi:10.1152/jn.00516.2003.

Winter, D. A. (1995). Human balance and posture control during standing and walking. Gait and Posture, 3(4), 193–214. doi:10.1016/0966-6362(96)82849-9.

Lee, D. N., & Aronson, E. (1974). Visual proprioceptive control of standing in human infants. Perception & Psychophysics, 15(3), 529–532. doi:10.3758/BF03199297.

Persiani, M., Piras, A., Squatrito, S., & Raffi, M. (2015). Laterality of Stance during Optic Flow Stimulation in Male and Female Young Adults. BioMed Research International, 2015(542645). doi:10.1155/2015/542645.

Piras, A., Raffi, M., Perazzolo, M., & Squatrito, S. (2018). Influence of heading perception in the control of posture. Journal of Electromyography and Kinesiology, 39, 89–94. doi:10.1016/j.jelekin.2018.02.001.

Raffi, M., Piras, A., Persiani, M., Perazzolo, M., & Squatrito, S. (2017). Angle of gaze and optic flow direction modulate body sway. Journal of Electromyography and Kinesiology, 35, 61–68. doi:10.1016/j.jelekin.2017.05.008.

Piras, A., Perazzolo, M., Scalinci, S. Z., & Raffi, M. (2022). The effect of diabetic retinopathy on standing posture during optic flow stimulation. Gait and Posture, 95, 242–248. doi:10.1016/j.gaitpost.2020.10.020.

Piras, A., Trofè, A., Meoni, A., & Raffi, M. (2022). Influence of radial optic flow stimulation on static postural balance in Parkinson’s disease: A preliminary study. Human Movement Science, 81. doi:10.1016/j.humov.2021.102905.

Stoffregen, T. A. (1985). Flow Structure Versus Retinal Location in the Optical Control of Stance. Journal of Experimental Psychology: Human Perception and Performance, 11(5), 554–565. doi:10.1037/0096-1523.11.5.554.

Kiemel, T., Oie, K. S., & Jeka, J. J. (2002). Multisensory fusion and the stochastic structure of postural sway. Biological Cybernetics, 87(4), 262–277. doi:10.1007/s00422-002-0333-2.

Stoffregen, T. A. (1986). The role of optical velocity in the control of stance. Perception & Psychophysics, 39(5), 355–360. doi:10.3758/BF03203004.

Lestienne, F., Soechting, J., & Berthoz, A. (1977). Postural readjustments induced by linear motion of visual scenes. Experimental Brain Research, 28(3–4), 363–384. doi:10.1007/BF00235717.

Brandt, T., Dichgans, J., & Koenig, E. (1973). Differential effects of central versus peripheral vision on egocentric and exocentric motion perception. Experimental Brain Research, 16(5), 476–491. doi:10.1007/BF00234474.

Stoffregen, T. A., Schmuckler, M. A., & Gibson, E. J. (1987). Use of central and peripheral optical flow in stance and locomotion in young walkers. Perception, 16(1), 113–119. doi:10.1068/p160113.

Peterka, R. J., & Benolken, M. S. (1995). Role of somatosensory and vestibular cues in attenuating visually induced human postural sway. Experimental Brain Research, 105(1), 101–110. doi:10.1007/BF00242186.

Raffi, M., & Piras, A. (2019). Investigating the crucial role of optic flow in postural control: Central vs. peripheral visual field. Applied Sciences (Switzerland), 9(5). doi:10.3390/app9050934.

Bonci, C. M. (1999). Assessment and evaluation of predisposing factors to anterior cruciate ligament injury. Journal of athletic training, 34(2), 155.

Fujimoto, K., & Ashida, H. (2020). Different Head-Sway Responses to Optic Flow in Sitting and Standing With a Head-Mounted Display. Frontiers in Psychology, 11(577305). doi:10.3389/fpsyg.2020.577305.

Obereisenbuchner, F., Dowsett, J., & Taylor, P. C. J. (2021). Self-initiation Inhibits the Postural and Electrophysiological Responses to Optic Flow and Button Pressing. Neuroscience, 470, 37–51. doi:10.1016/j.neuroscience.2021.07.003.

Schreiber, K. M., Hillis, J. M., Filippini, H. R., Schor, C. M., & Banks, M. S. (2008). The surface of the empirical horopter. Journal of Vision, 8(3). doi:10.1167/8.3.7.

Harris, L. R., Carnevale, M. J., D’Amour, S., Fraser, L. E., Harrar, V., Hoover, A. E. N., Mander, C., & Pritchett, L. M. (2015). How our body influences our perception of the world. Frontiers in Psychology, 6. doi:10.3389/fpsyg.2015.00819.

Roll, J.-P., Vedel, J.-P., & Roll, R. (1989). Chapter 10 Eye, head and skeletal muscle spindle feedback in the elaboration of body references. Afferent Control of Posture and Locomotion, 113–123, Elsevier, Amsterdam, Netherlands. doi:10.1016/s0079-6123(08)62204-9.

Roll, R., Velay, J. L., & Roll, J. P. (1991). Eye and neck proprioceptive messages contribute to the spatial coding of retinal input in visually oriented activities. Experimental Brain Research, 85(2). doi:10.1007/bf00229419.

Velay, J. L., Roll, R., Lennerstrand, G., & Roll, J. P. (1994). Eye proprioception and visual localization in humans: Influence of ocular dominance and visual context. Vision Research, 34(16), 2169–2176. doi:10.1016/0042-6989(94)90325-5.

Schubert, M., Bohner, C., Berger, W., Sprundel, M. V., & Duysens, J. E. J. (2003). The role of vision in maintaining heading direction: Effects of changing gaze and optic flow on human gait. Experimental Brain Research, 150(2), 163–173. doi:10.1007/s00221-003-1390-z.

Jeschke, A. M., de Groot, L. E., van der Woude, L. H. V., Oude Lansink, I. L. B., van Kouwenhove, L., & Hijmans, J. M. (2019). Gaze direction affects walking speed when using a self-paced treadmill with a virtual reality environment. Human Movement Science, 67. doi:10.1016/j.humov.2019.102498.


Full Text: PDF

DOI: 10.28991/ESJ-2022-06-06-020

Refbacks

  • There are currently no refbacks.


Copyright (c) 2022 Milena Raffi