Artificial Intelligence-based Control Techniques for HVDC Systems

Ali Hadi Abdulwahid


The electrical energy industry depends, among other things, on the ability of networks to deal with uncertainties from several directions. Smart-grid systems in high-voltage direct current (HVDC) networks, being an application of artificial intelligence (AI), are a reliable way to achieve this goal as they solve complex problems in power system engineering using AI algorithms. Due to their distinctive characteristics, they are usually effective approaches for optimization problems. They have been successfully applied to HVDC systems. This paper presents a number of issues in HVDC transmission systems. It reviews AI applications such as HVDC transmission system controllers and power flow control within DC grids in multi-terminal HVDC systems. Advancements in HVDC systems enable better performance under varying conditions to obtain the optimal dynamic response in practical settings. However, they also pose difficulties in mathematical modeling as they are non-linear and complex. ANN-based controllers have replaced traditional PI controllers in the rectifier of the HVDC link. Moreover, the combination of ANN and fuzzy logic has proven to be a powerful strategy for controlling excessively non-linear loads. Future research can focus on developing AI algorithms for an advanced control scheme for UPFC devices. Also, there is a need for a comprehensive analysis of power fluctuations or steady-state errors that can be eliminated by the quick response of this control scheme. This survey was informed by the need to develop adaptive AI controllers to enhance the performance of HVDC systems based on their promising results in the control of power systems.


Doi: 10.28991/ESJ-2023-07-02-024

Full Text: PDF


AI Algorithms; HVDC Transmission System; Power System Protection; Intelligent System.


Watson, N. R., & Watson, J. D. (2020). An overview of HVDC technology. Energies, 13(17), 4342. doi:10.3390/en13174342.

Barnes, M., Van Hertem, D., Teeuwsen, S. P., & Callavik, M. (2017). HVDC Systems in Smart Grids. Proceedings of the IEEE, 105(11), 2082–2098. doi:10.1109/JPROC.2017.2672879.

Sanjari, M. J., Alizadeh Mousavi, O., & Gharehpetian, G. B. (2013). Assessing the risk of blackout in the power system including HVDC and FACTS devices. International Transactions on Electrical Energy Systems, 23(1), 109–121. doi:10.1002/etep.1619.

Bhande, S. A., & Chandrakar, V. K. (2022). Fuzzy Logic based Static Synchronous Series Compensator (SSSC) to enhance Power System Security. In 2022 IEEE IAS Global Conference on Emerging Technologies (GlobConET), IEEE, 667-672. doi:10.1109/GlobConET53749.2022.9872362.

Darabian, M., Jalilvand, A., Ashouri, A., & Bagheri, A. (2020). Stability improvement of large-scale power systems in the presence of wind farms by employing HVDC and STATCOM based on a non-linear controller. International Journal of Electrical Power & Energy Systems, 120, 106021. doi:10.1016/j.ijepes.2020.106021.

Wang, Y., Zhu, J., Zeng, Q., Zheng, Z., Yu, G., & Yin, A. (2021). Frequency coordinated control strategy for an HVDC sending-end system with wind power integration based on fuzzy logic control. Energies, 14(19), 6095. doi:10.3390/en14196095.

Balda, J. C., Olejniczak, K. J., & Low, S. C. (1994). The Electromagnetic Transients Program (EMTP) as an effective tool to evaluate active power filters for harmonic compensation. Electric Power Systems Research, 30(3), 269–277. doi:10.1016/0378-7796(94)00866-3.

Guo, C., Wu, Z., Yang, S., & Hu, J. (2022). Overcurrent Suppression Control for Hybrid LCC/VSC Cascaded HVDC System Based on Fuzzy Clustering and Identification Approach. IEEE Transactions on Power Delivery, 37(3), 1745–1753. doi:10.1109/TPWRD.2021.3096954.

Bauman, J., & Kazerani, M. (2007). Commutation failure reduction in HVDC systems using adaptive fuzzy logic controller. IEEE Transactions on Power Systems, 22(4), 1995–2002. doi:10.1109/TPWRS.2007.907385.

Bernardes, H., Tonelli-Neto, M., & Minussi, C. R. (2021). Fault Classification in Power Distribution Systems Using Multiresolution Analysis and a Fuzzy-ARTMAP Neural Network Analysis and a Fuzzy-ARTMAP Neural Network. IEEE Latin America Transactions, 19(11), 1824–1831. doi:10.1109/TLA.2021.9475615.

Berenguel, M., Camacho, E. F., & Rubio, F. R. (1997). Incremental fuzzy PI control of a solar power plant. IEE Proceedings: Control Theory and Applications, 144(6), 596–604. doi:10.1049/ip-cta:19971461.

Ananth, D. V. N., Lagudu, V. S. K., & Madichetty, S. (2022). The black-start capability improvement of VSC-based HVDC transmission system using fuzzy-adaptive PI controller. International Journal of Ambient Energy, 43(1), 2787–2795. doi:10.1080/01430750.2020.1773925.

Jeong, S., Junghun, L., & Jang, G. (2019). A Novel VSC HVDC Frequency Control Strategy based on Neural Network Power Estimation using ROCOF. IFAC-PapersOnLine, 52(4), 467–471. doi:10.1016/j.ifacol.2019.08.254.

Rohani, R., & Koochaki, A. (2020). A hybrid method based on optimized neuro-fuzzy system and effective features for fault location in VSC-HVDC systems. IEEE Access, 8, 70861–70869. doi:10.1109/ACCESS.2020.2986919.

Ahmadi K., M., Shokouhandeh, H., Alipur, M., Colak, I., Zare, H., & Eguchi, K. (2022). Optimal Designing of Fuzzy-PID Controller in the Load-Frequency Control Loop of Hydro-Thermal Power System Connected to Wind Farm by HVDC Lines. IEEE Access, 10, 63812–63822. doi:10.1109/ACCESS.2022.3183155.

Nayak, N., Routray, S. K., & Rout, P. K. (2016). Design of Takagi-Sugeno fuzzy controller for VSC-HVDC parallel AC transmission system using differential evolution algorithm. International Journal of Computer Aided Engineering and Technology, 8(3), 277–294. doi:10.1504/IJCAET.2016.077605.

Hamidi, A., Beiza, J., Abedinzadeh, T., & Daghigh, A. (2022). Robust Power Designing of Supplementary Damping Controller in VSC HVDC System to Improve Energy Conversion Efficiency of Wind Turbine and Power System Stability. Journal of Electrical and Computer Engineering, 2022, 1–16. doi:10.1155/2022/7645777.

Lin, C. H., & Wu, Y. K. (2021). Overview of Frequency-Control Technologies for a VSC-HVDC-Integrated Wind Farm. IEEE Access, 9, 112893–112921. doi:10.1109/ACCESS.2021.3102829.

Meseret, G. M., & Saikia, L. C. (2022). A Comparative Performance Analysis evaluation of Automatic Generation Control (AGC) of Multi-Area Power System with the impact of HVDC Links on the System Frequency using the Conventional PID and Adaptive Neuro-Fuzzy Controller. IFAC-PapersOnLine, 55(1), 138–143. doi:10.1016/j.ifacol.2022.04.023.

Saini, M. (2020). Faults Detection and Classification on Parallel Transmission Lines using Modified Clarke’s Transformation-ANN Approach. Przegląd Elektrotechniczny, 1(4), 25–29. doi:10.15199/48.2020.04.04. (In Polish).

Nagar, K., & Shah, M. (2016). A Review on Different ANN Based Fault Detection Techniques for HVDC Systems. International Journal of Innovative Research in Engineering & Management, 3(6), 477–481. doi:10.21276/ijirem.2016.3.6.5.

Khorashadi Zadeh, H. (2005). An ANN-Based High Impedance Fault Detection Scheme: Design and Implementation. International Journal of Emerging Electric Power Systems, 4(2), 1-14. doi:10.2202/1553-779x.1046.

Patel, M., Roy, S., Roskilly, A. P., & Smallbone, A. (2022). The techno-economics potential of hydrogen interconnectors for electrical energy transmission and storage. Journal of Cleaner Production, 335, 130045. doi:10.1016/j.jclepro.2021.130045.

Narendra, K. G., Sood, V. K., Khorasani, K., & Patel, R. V. (1997). Investigation into an artificial neural network based on-line current controller for an HVDC transmission link. IEEE Transactions on Power Systems, 12(4), 1425–1431. doi:10.1109/59.627837.

Xiang, W. (2018). DC Fault Detection and Identification of a Four-Terminal MMC Based DC Grid Using ANN Method. The Journal of Engineering. doi:10.1049/joe.2018.8538.

Muzzammel, R. (2019). Traveling waves-based method for fault estimation in HVDC transmission system. Energies, 12(19), 3614. doi:10.3390/en12193614.

Pradhan, J. K., Ghosh, A., & Bhende, C. N. (2017). Small-signal modeling and multivariable PI control design of VSC-HVDC transmission link. Electric Power Systems Research, 144, 115–126. doi:10.1016/j.epsr.2016.11.005.

Zeng, L., Yao, W., Zeng, Q., Li, D., Fang, J., Ai, X., Wen, J., & He, H. (2019). Design and real-time implementation of data-driven adaptive wide-area damping controller for back-to-back VSC-HVDC. International Journal of Electrical Power and Energy Systems, 109, 558–574. doi:10.1016/j.ijepes.2019.02.024.

Narayane, P. V., Naidu, D. H. K., & Pawade, V. (2018). Power Factor Correction of a Single Phase AC to DC Interleaved Boost Converter using Fuzzy Logic Controller. International Journal of Trend in Scientific Research and Development, Volume-2(Issue-4), 1884–1891. doi:10.31142/ijtsrd14459.

Kumar, M. A., & Srikanth, N. V. (2014). An adaptive neuro fuzzy inference system controlled space cector pulse width modulation based HVDC Light transmission system under ac fault conditions. Central European Journal of Engineering, 4(1), 27–38. doi:10.2478/s13531-013-0143-4.

Liu, C., Zhuo, F., & Wang, F. (2021). Fault Diagnosis of Commutation Failure Using Wavelet Transform and Wavelet Neural Network in HVDC Transmission System. IEEE Transactions on Instrumentation and Measurement, 70, 1–8. doi:10.1109/TIM.2021.3115574.

Zhang, H. Q. (2013). BP neural network and its improved algorithm in the power system transformer fault diagnosis. Applied Mechanics and Materials, 418, 200–204. doi:10.4028/

Roy, N. B. (2021). Fault Identification and Determination of Its Location in a HVDC System Based on Feature Extraction and Artificial Neural Network. Journal of The Institution of Engineers (India): Series B, 102(2), 351–361. doi:10.1007/s40031-021-00541-5.

Ganjefar, S., Tofighi, M., & Karami, H. (2015). Fuzzy wavelet plus a quantum neural network as a design base for power system stability enhancement. Neural Networks, 71, 172–181. doi:10.1016/j.neunet.2015.07.010.

Nayak, N., Ray, S. . R., & Rout, P. K. (2011). "Improvement of Transient Stability of VSC HVDC System with Particle Swarm Optimization Based PI Controller. International Journal of Power System Operation and Energy Management, 81–89. doi:10.47893/ijpsoem.2011.1016.

Reeve, J., & Sultan, M. (1994). Gain scheduling adaptive control strategies for HVDC systems to accommodate large disturbances. IEEE Transactions on Power Systems, 9(1), 366–372. doi:10.1109/59.317589.

Zhang, Y., Li, T., Wang, J., Wang, H., & Chang, Y. (2021). Fault location for overhead and cable hybrid transmission line in VSC-HVDC system. Electric Power Systems Research, 195, 107122. doi:10.1016/j.epsr.2021.107122.

Muniappan, M. (2021). A comprehensive review of DC fault protection methods in HVDC transmission systems. Protection and Control of Modern Power Systems, 6(1), 1-20. doi:10.1186/s41601-020-00173-9.

Marreddy, U. V., Rao P.V., R., & Kumar, S.V. (2010). Fuzzy Logic Controller for Enhancement of Transient Stability in Multi Machine AC-DC Power Systems. International Journal of Engineering and Technology, 2(5), 423–429. doi:10.7763/ijet.2010.v2.159.

Bhookya, N. (2013). Enhancement of Power System Stability Using Self−Organized Neuro−Fuzzy Based HVDC Controls. American Journal of Electrical Power and Energy Systems, 2(4), 98. doi:10.11648/j.epes.20130204.11.

Varnamkhasti, M. J. (2013). A hybrid of adaptive neuro-fuzzy inference system and genetic algorithm. Journal of Intelligent & Fuzzy Systems, 25(3), 793–796. doi:10.3233/ifs-120685.

Eboule, P. (2021). Accurate Fault Detection and Location in Power Transmission Line Using Concurrent Neuro Fuzzy Technique. Przegląd Elektrotechniczny, 1(1), 39–47. doi:10.15199/48.2021.01.07. (In Polish).

Adnan, H., & Alsammak, A. (2020). A Comparison Study of the Most Important Types of the Flexible Alternating Current Transmission Systems (FACTs). Al-Rafidain Engineering Journal (AREJ), 25(1), 49–55. doi:10.33899/rengj.2020.126854.1027.

Nandhini, M., & Srinivasan, S. (2017). A Novel Protection Method for Unsymmetrical Fault Detection of Overhead Transmission Line by Using DWT. Bonfring International Journal of Man Machine Interface, 7(1), 1–5. doi:10.9756/bijmmi.2214.

Li, B., Li, C., Li, B., Wen, W., Cui, H., & Su, J. (2021). Transient fault identification method for bipolar short-circuit fault on MMC-HVDC overhead lines based on hybrid HVDC breaker. High Voltage, 6(5), 881–893. doi:10.1049/hve2.12091.

Reddy, M. J. B., & Mohanta, D. K. (2008). Performance evaluation of an adaptive-network-based fuzzy inference system approach for location of faults on transmission lines using Monte Carlo simulation. IEEE Transactions on Fuzzy Systems, 16(4), 909–919. doi:10.1109/TFUZZ.2008.924210.

Abdulwahid, A. H., & Wang, S. (2016). A novel approach for microgrid protection based upon combined ANFIS and Hilbert space-based power setting. Energies, 9(12), 1042. doi:10.3390/en9121042.

Eyenubo, O., & Oshevire, P. (2017). Improvement of Power System Quality Using VSC-Based HVDC Transmission. Nigerian Journal of Technology, 36(3), 889–896. doi:10.4314/njt.v36i3.31.

Liu, Y., & Chen, Z. (2013). A flexible power control method of VSC-HVDC link for the enhancement of effective short-circuit ratio in a hybrid multi-infeed HVDC system. IEEE Transactions on Power Systems, 28(2), 1568–1581. doi:10.1109/TPWRS.2012.2222057.

Sen, K. K. (1998). SSSC - Static Synchronous Series Compensator: Theory, modeling, and applications. IEEE Transactions on Power Delivery, 13(1), 241–246. doi:10.1109/61.660884.

Han, B. M., Kim, H. J., & Baek, S. T. (2002). Performance analysis of SSSC based on three-level multi-bridge PWM inverter. Electric Power Systems Research, 61(3), 195–202. doi:10.1016/S0378-7796(02)00012-3.

Kim, T., Adeli, H., Stoica, A., & Kang, B.-H. (Eds.). (2011). Control and Automation, and Energy System Engineering. Communications in Computer and Information Science, Berlin, Germany. doi:10.1007/978-3-642-26010-0.

Sun, K., Xiao, H., Pan, J., & Liu, Y. (2021). VSC-HVDC Interties for Urban Power Grid Enhancement. IEEE Transactions on Power Systems, 36(5), 4745–4753. doi:10.1109/TPWRS.2021.3067199.

Abbasi, M., Shayestehkhah, H., & Tousi, B. (2018). Application of an additive self-tuning controller for static synchronous series compensator for damping of sub-synchronous resonance oscillations. International Journal of Engineering, Transactions B: Applications, 31(4), 564–573. doi:10.5829/ije.2018.31.04a.07.

Rahimkhani, Z. (2017). Novel fuzzy optimal controller based on STATCOM to damp SSR oscillations in series compensated systems. Bioscience Biotechnology Research Communications, 10(2), 287–296. doi:10.21786/bbrc/10.2/48.

Gyugyi, L., Schauder, C. D., & Sen, K. K. (1997). Static synchronous series compensator: A solid-state approach to the series compensation of transmission lines. IEEE Power Engineering Review, 17(1), 62. doi:10.1109/MPER.1997.560708.

Ramesh, M., Swathi, I., & Laxmi, A. J. (2012). Stability Enhancement of HVDC System using Fuzzy based STATCOM. AASRI Procedia, 2, 205–215. doi:10.1016/j.aasri.2012.09.036.

Chang, C. S., & Qizhi, Y. (1999). Fuzzy bang-bang control of static VAR compensators for damping system-wide low-frequency oscillations. Electric Power Systems Research, 49(1), 45–54. doi:10.1016/s0378-7796(98)00120-5.

Lehn, P. W., & Iravani, M. R. (1998). Experimental evaluation of STATCOM closed loop dynamic. IEEE Transactions on Power Delivery, 13(4), 1378–1384. doi:10.1109/61.714511.

Karlecik-Maier, F. (1996). A new closed loop control method for HVDC transmission. IEEE Transactions on Power Delivery, 11(4), 1955–1960. doi:10.1109/61.544282.

Benasla, M., Allaoui, T., Brahami, M., Sood, V. K., & Denaï, M. (2019). Power system security enhancement by HVDC links using a closed-loop emergency control. Electric Power Systems Research, 168, 228–238. doi:10.1016/j.epsr.2018.12.002.

Li, B., Cui, H., Li, B., Wen, W., & Dai, D. (2020). A permanent fault identification method for single-pole grounding fault of overhead transmission lines in VSC-HVDC grid based on fault line voltage. International Journal of Electrical Power & Energy Systems, 117, 105603. doi:10.1016/j.ijepes.2019.105603.

Wang, M., Zhang, G., & Zhang, Z. (2022). Impact of HVDC transmission capacity on multi-send HVDC system voltage stability. Energy Reports, 8, 1004–1010. doi:10.1016/j.egyr.2022.05.267.

Parizzi, B. J., Alberto Farret, F., & B. Serdotte, Á. (2007). Improvement of Power Quality in HVDC Transmission Systems with Auxiliary Converters. Eletrônica de Potência, 12(3), 181–188. doi:10.18618/rep.2007.3.181188.

Liaqat, M. (2019). HVDC System: a Need for Future Power Transmission. International Journal of Trend in Scientific Research and Development, 3(2), 165–171. doi:10.31142/ijtsrd20318.

P Ankineedu Prasad, G. M. (2020). Fuzzy Logic based H-bridge STATCOM Controller to compensate Unbalanced Voltages. International Journal for Modern Trends in Science and Technology, 6(7), 135–139. doi:10.46501/ijmtst060721.

Li, D., & Cai, T. T. (2017). Control Strategy for VSC-HVDC under Unbalanced Grid Voltages. Applied Mechanics and Materials, 863, 214–219. doi:10.4028/

Midhuna, A., & Baskaran, K. (2022). A Robust Control of D-STATCOM for Voltage Stability. Journal of ISMAC, 4(1). doi:10.36548/jismac.2022.1.001.

Thakre, M. P., & Kumar, N. (2021). Evaluation and Control Perceptive of VSM-Based Multilevel PV-STATCOM for Distributed Energy System. MAPAN, 36(3), 561–578. doi:10.1007/s12647-021-00481-x.

Gupta, G., Fritz, W. L. O., & Kahn, M. T. (2020). Voltage Fluctuation on Distribution Grid Using STATCOM with Droop Control and DER. SSRN Electronic Journal. doi:10.2139/ssrn.3656565.

Enjeti, P. N., & Choudhury, S. A. (1993). A New Control Strategy to Improve the Performance of a PWM AC to DC Converter under Unbalanced Operating Conditions. IEEE Transactions on Power Electronics, 8(4), 493–500. doi:10.1109/63.261020.

Dinavahi, V. R., Iravani, M. R., & Bonert, R. (2008). Real-Time Digital Simulation of Power Electronic Apparatus Interfaced with Digital Controllers. IEEE Power Engineering Review, 21(8), 63–64. doi:10.1109/mper.2001.4311579.

Lu, W., & Ooi, B. T. (2003). DC overvoltage control during loss of converter in multiterminal voltage-source converter-based HVDC (M-VSC-HVDC). IEEE Transactions on Power Delivery, 18(3), 915–920. doi:10.1109/TPWRD.2003.813888.

Zhang, M. G., Wang, D. B., & Zhang, Z. K. (2013). Control strategy for voltage source converter-based HVDC system under unbalanced voltage conditions. Applied Mechanics and Materials, 437, 629–633. doi:10.4028/

Aik, D. L. H., & Andersson, G. (2019). Fundamental Analysis of Voltage and Power Stability of Single-Infeed Voltage-Source Converter HVDC Systems. IEEE Transactions on Power Delivery, 34(1), 365–375. doi:10.1109/TPWRD.2018.2874335.

Zhao, P., Chen, Q., Sun, K., & Xi, C. (2017). A current frequency component-based fault-location method for voltage-source converter-based high-voltage direct current (VSC-HVDC) cables using the s transform. Energies, 10(8), 1115. doi:10.3390/en10081115.

Raza, A., Yousaf, Z., Jamil, M., Gilani, S. O., Abbas, G., Uzair, M., Shaheen, S., Benrabah, A., & Li, F. (2018). Multi-Objective Optimization of VSC Stations in Multi-Terminal VSC-HVdc Grids, Based on PSO. IEEE Access, 6, 62995–63004. doi:10.1109/ACCESS.2018.2875972.

Tsai, H. C., Liu, J. H., & Chu, C. C. (2019). Integrations of Neural Networks and Transient Energy Functions for Designing Supplementary Damping Control of UPFC. IEEE Transactions on Industry Applications, 55(6), 6438–6450. doi:10.1109/TIA.2019.2936381.

Sarita, K., Kumar, S., Vardhan, A. S. S., Elavarasan, R. M., Saket, R. K., Shafiullah, G. M., & Hossain, E. (2020). Power Enhancement with Grid Stabilization of Renewable Energy-Based Generation System Using UPQC-FLC-EVA Technique. IEEE Access, 8, 207443–207464. doi:10.1109/ACCESS.2020.3038313.

Alsammak, A. N., & Mohammed, H. A. (2021). Power quality improvement using fuzzy logic controller based unified power flow controller (UPFC). Indonesian Journal of Electrical Engineering and Computer Science, 21(1), 1–9. doi:10.11591/ijeecs.v21.i1.pp1-9.

Alanis, A., Arana-Daniel, N., & Lopez-Franco, C. (2019). Artificial Neural Networks for Engineering Applications. Academic Press, Cambridge, Massachusetts, United States. doi:10.1016/c2018-0-01649-7.

Udupa, P. (2022). Application of artificial intelligence for university information system. Engineering Applications of Artificial Intelligence, 114, 105038. doi:10.1016/j.engappai.2022.105038.

Ma, Y., & Liu, Q. (2021). Real-Time Application Optimization Control Algorithm for Energy Management Strategy of the Hybrid Power System Based on Artificial Intelligence. Mobile Information Systems, 2021, 1–13. doi:10.1155/2021/7666834.

Castelletti, A., Galelli, S., Restelli, M., & Soncini-Sessa, R. (2012). Data-driven dynamic emulation modelling for the optimal management of environmental systems. Environmental Modelling & Software, 34, 30–43. doi:10.1016/j.envsoft.2011.09.003.

Maier, H. R., Jain, A., Dandy, G. C., & Sudheer, K. P. (2010). Methods used for the development of neural networks for the prediction of water resource variables in river systems: Current status and future directions. Environmental Modelling & Software, 25(8), 891–909. doi:10.1016/j.envsoft.2010.02.003.

Zahraee, S. M., Khalaji Assadi, M., & Saidur, R. (2016). Application of Artificial Intelligence Methods for Hybrid Energy System Optimization. Renewable and Sustainable Energy Reviews, 66, 617–630. doi:10.1016/j.rser.2016.08.028.

Graupe, D. (2013). Principles of Artificial Neural Networks. Advanced Series in Circuits and Systems, World Scientific, Singapore. doi:10.1142/8868.

Bondarenko, A., & Aleksejeva, L. (2018). Methodology for Knowledge Extraction from Trained Artificial Neural Networks. Information Technology and Management Science, 21, 6–14. doi:10.7250/itms-2018-0001.

Full Text: PDF

DOI: 10.28991/ESJ-2023-07-02-024


  • There are currently no refbacks.

Copyright (c) 2023 Ali Hadi Abdulwahid