Batch and Streaming Data Ingestion towards Creating Holistic Health Records

Argyro Mavrogiorgou, Athanasios Kiourtis, George Manias, Chrysostomos Symvoulidis, Dimosthenis Kyriazis


The healthcare sector has been moving toward Electronic Health Record (EHR) systems that produce enormous amounts of healthcare data due to the increased emphasis on getting the appropriate information to the right person, wherever they are, at any time. This highlights the need for a holistic approach to ingest, exploit, and manage these huge amounts of data for achieving better health management and promotion in general. This manuscript proposes such an approach, providing a mechanism allowing all health ecosystem entities to obtain actionable knowledge from heterogeneous data in a multimodal way. The mechanism includes diverse techniques for automatically ingesting healthcare-related information from heterogeneous sources that produce batch/streaming data, managing, fusing, and aggregating this data into new data structures (i.e., Holistic Health Records (HHRs)). The latter enable the aggregation of data coming from different sources, such as Internet of Medical Things (IoMT) devices, online/offline platforms, while to effectively construct the HHRs, the mechanism develops various data management techniques covering the overall data path, from data acquisition and cleaning to data integration, modelling, and interpretation. The mechanism has been evaluated upon different healthcare scenarios, ranging from hospital-retrieved data to patient platforms, combined with data obtained from IoMT devices, having produced useful insights towards its successful and wide adaptation in this domain. In order to implement a paradigm shift from heterogeneous and independent data sources, limited data exploitation, and health records, the mechanism has combined multidisciplinary technologies toward HHRs.


Doi: 10.28991/ESJ-2023-07-02-03

Full Text: PDF


Data Collection; Data Ingestion; Batch Data; Streaming Data; Electronic Health Records; Internet of Medical Things (IoMT); Holistic Health Records.


Abul-Husn, N. S., & Kenny, E. E. (2019). Personalized Medicine and the Power of Electronic Health Records. Cell, 177(1), 58–69. doi:10.1016/j.cell.2019.02.039.

Aceto, G., Persico, V., & Pescapé, A. (2018). The role of Information and Communication Technologies in healthcare: taxonomies, perspectives, and challenges. Journal of Network and Computer Applications, 107, 125–154. doi:10.1016/j.jnca.2018.02.008.

Johnson, J. M., & Khoshgoftaar, T. M. (2019). Medicare fraud detection using neural networks. Journal of Big Data, 6(1), 1–35. doi:10.1186/s40537-019-0225-0.

García, P. J. (2019). Corruption in global health: the open secret. The Lancet, 394(10214), 2119–2124. doi:10.1016/S0140-6736(19)32527-9.

Cave, A., Brun, N. C., Sweeney, F., Rasi, G., & Senderovitz, T. (2020). Big Data – How to Realize the Promise. Clinical Pharmacology & Therapeutics, 107(4), 753–761. doi:10.1002/cpt.1736.

Asah, F., Kaasbøll, J., Nielsen, P., & Seukap, R. (2021). Organizations failing to learn: Roadblocks to the Implementation of Standardized Information Systems. Journal of Health Informatics in Developing Countries, 15(1), 1-31.

Vishnu, S., Ramson, S. R. J., & Jegan, R. (2020). Internet of Medical Things (IoMT) - An overview. 2020 5th International Conference on Devices, Circuits and Systems (ICDCS). doi:10.1109/icdcs48716.2020.243558.

Noura, M., Atiquzzaman, M., & Gaedke, M. (2019). Interoperability in Internet of Things: Taxonomies and Open Challenges. Mobile Networks and Applications, 24(3), 796–809. doi:10.1007/s11036-018-1089-9.

Miorandi, D., Sicari, S., De Pellegrini, F., & Chlamtac, I. (2012). Internet of things: Vision, applications and research challenges. Ad Hoc Networks, 10(7), 1497–1516. doi:10.1016/j.adhoc.2012.02.016.

Bhat, G., Deb, R., & Ogras, U. Y. (2019). OpenHealth: Open-Source Platform for Wearable Health Monitoring. IEEE Design and Test, 36(5), 27–34. doi:10.1109/MDAT.2019.2906110.

Mavrogiorgou, A., Kiourtis, A., & Kyriazis, D. (2020). A plug ‘n’ play approach for dynamic data acquisition from heterogeneous IoT medical devices of unknown nature. Evolving Systems, 11(2), 269–289. doi:10.1007/s12530-019-09286-5.

Kiourtis, A., Mavrogiorgou, A., & Kyriazis, D. (2021). Prioritization of IoT Devices Healthcare Data based on Attribute Scoring and Metadata Annotation. 2021 IEEE International Conference on Smart Internet of Things (SmartIoT), Jeju, Korea. doi:10.1109/smartiot52359.2021.00041.

Mavrogiorgou, A., Kiourtis, A., Touloupou, M., & Kyriazis, D. (2019). Identification of Bluetooth-Enabled IoT Devices through Syntactic Similarity Techniques. 2019 Eleventh International Conference on Ubiquitous and Future Networks (ICUFN). doi:10.1109/icufn.2019.8806153.

Kiourtis, A., Nifakos, S., Mavrogiorgou, A., & Kyriazis, D. (2019). Aggregating the syntactic and semantic similarity of healthcare data towards their transformation to HL7 FHIR through ontology matching. International Journal of Medical Informatics, 132, 104002. doi:10.1016/j.ijmedinf.2019.104002.

Perakis, K., Miltiadou, D., de Nigro, A., Torelli, F., Montandon, L., Magdalinou, A., Mavrogiorgou, A., & Kyriazis, D. (2019). Data sources and gateways: Design and open specification. Acta Informatica Medica, 27(5), 341–347. doi:10.5455/aim.2019.27.341-347.

Prasser, F., Eicher, J., Spengler, H., Bild, R., & Kuhn, K. A. (2020). Flexible data anonymization using ARX—Current status and challenges ahead. Software - Practice and Experience, 50(7), 1277–1304. doi:10.1002/spe.2812.

Kiourtis, A., Mavrogiorgou, A., & Kyriazis, D. (2018). FHIR Ontology Mapper (FOM): Aggregating Structural and Semantic Similarities of Ontologies towards their Alignment to HL7 FHIR. 2018 IEEE 20th International Conference on E-Health Networking, Applications and Services (Healthcom). doi:10.1109/healthcom.2018.8531149.

Kiourtis, A., Mavrogiorgou, A., Kyriazis, D., Torelli, F., Martino, D., & De Nigro, A. (2021). Holistic Health Records towards Personalized Healthcare. Proceedings of the 7th International Conference on Information and Communication Technologies for Ageing Well and E-Health. doi:10.5220/0010509300780089.

Geßner, S., Neuhaus, P., Varghese, J., Bruland, P., Meidt, A., Soto-Rey, I., ... & Dugas, M. (2017). The portal of medical data models: where have we been and where are we going?. MEDINFO 2017: Precision Healthcare through Informatics, 858-862. IOS Press, Amsterdam, Netherlands. doi:10.3233/978-1-61499-830-3-858.

Mavrogiorgou, A., Kiourtis, A., Touloupou, M., Kapassa, E., & Kyriazis, D. (2019). Internet of medical things (IoMT): Acquiring and transforming data into hl7 fhir through 5g network slicing. Emerging Science Journal, 3(2), 64–77. doi:10.28991/esj-2019-01170.

Mavrogiorgou, A., Kiourtis, A., Perakis, K., Miltiadou, D., Pitsios, S., & Kyriazis, D. (2019). Analyzing data and data sources towards a unified approach for ensuring end-to-end data and data sources quality in healthcare 4.0. Computer Methods and Programs in Biomedicine, 181, 104967. doi:10.1016/j.cmpb.2019.06.026.

CareAcross Platform (2023). Available online: (accessed on January 2023).

iHealth Labs Inc. (2023). iHealth Feel Wireless Monitor. Available online: (accessed on January 2023).

Helfand, M., Fiordalisi, C., Wiedrick, J., Ramsey, K. L., Armstrong, C., Gean, E., Winchell, K., & Arkhipova-Jenkins, I. (2022). Risk for Reinfection after SARS-CoV-2: A Living, Rapid Review for American College of Physicians Practice Points on the Role of the Antibody Response in Conferring Immunity following SARS-CoV-2 Infection. Annals of Internal Medicine, 175(4), 547–555. doi:10.7326/M21-4245.

Busse, R., Panteli, D., & Quentin, W. (2019). An introduction to healthcare quality: defining and explaining its role in health systems. Improving healthcare quality in Europe, 1.

Weible, C. M., Nohrstedt, D., Cairney, P., Carter, D. P., Crow, D. A., Durnová, A. P., Heikkila, T., Ingold, K., McConnell, A., & Stone, D. (2020). COVID-19 and the policy sciences: initial reactions and perspectives. Policy Sciences, 53(2), 225–241. doi:10.1007/s11077-020-09381-4.

Kiourtis, A., Karamolegkos, P., Karabetian, A., Voulgaris, K., Poulakis, Y., Mavrogiorgou, A., & Kyriazis, D. (2022). An Autoscaling Platform Supporting Graph Data Modelling Big Data Analytics. Studies in Health Technology and Informatics, 295, 376–379. doi:10.3233/SHTI220743.

Verguet, S., Hailu, A., Eregata, G. T., Memirie, S. T., Johansson, K. A., & Norheim, O. F. (2021). Toward universal health coverage in the post-COVID-19 era. Nature Medicine, 27(3), 380–387. doi:10.1038/s41591-021-01268-y.

O’leary, N., Kingston, L., Griffin, A., Morrissey, A. M., Noonan, M., Kelly, D., Doody, O., Niranjan, V., Gallagher, A., O’riordan, C., & Lynch, A. (2021). COVID-19 healthcare policies in Ireland: A rapid review of the initial pandemic response. Scandinavian Journal of Public Health, 49(7), 713–720. doi:10.1177/14034948211008371.

Kyriazis, D., Biran, O., Bouras, T., Brisch, K., Duzha, A., del Hoyo, R., Kiourtis, A., Kranas, P., … Tsanakas, P. (2020). PolicyCLOUD: Analytics as a Service Facilitating Efficient Data-Driven Public Policy Management. Artificial Intelligence Applications and Innovations, AIAI 2020, IFIP Advances in Information and Communication Technology, 583. Springer, Cham, Switzerland. doi:10.1007/978-3-030-49161-1_13.

Kiourtis, A., Mavrogiorgou, A., & Kyriazis, D. (2021). A comparative study of bluetooth spp, pan and goep for efficient exchange of healthcare data. Emerging Science Journal, 5(3), 279–293. doi:10.28991/esj-2021-01276.

Doniparthi, G., Mühlhaus, T., Deßloch, S. (2021). A Hybrid Data Model and Flexible Indexing for Interactive Exploration of Large-Scale Bio-science Data. New Trends in Database and Information Systems. ADBIS 2021, Communications in Computer and Information Science, 1450, Springer, Cham, Switzerland. doi:10.1007/978-3-030-85082-1_3.

Full Text: PDF

DOI: 10.28991/ESJ-2023-07-02-03


  • There are currently no refbacks.

Copyright (c) 2023 Argyro Mavrogiorgou, Athanasios Kiourtis, George Manias, Dimosthenis Kyriazis