Public Perceptions on Application Areas and Adoption Challenges of AI in Urban Services

Tan Yigitcanlar, Rita Yi Man Li, Tommi Inkinen, Alexander Paz


Artificial intelligence (AI) deployment is exceedingly relevant to local governments, for example, in planning and delivering urban services. AI adoption in urban services, however, is an understudied area, particularly because there is limited knowledge and hence a research gap on the public's perceptions-users/receivers of these services. This study aims to examine people’s behaviors and preferences regarding the most suited urban services for application of AI technology and the challenges for governments to adopt AI for urban service delivery. The methodological approach includes data collection through an online survey from Australia and Hong Kong and statistical analysis of the data through binary logistic regression modeling. The study finds that: (a) Attitudes toward AI applications and ease of use have significant effects on forming an opinion on AI; (b) initial thoughts regarding the meaning of AI have a significant impact on AI application areas and adoption challenges; (c) perception differences between the two countries in AI application areas are significant; and (d) perception differences between the two countries in government AI adoption challenges are minimal. The study consolidates our understanding of how the public perceives the application areas and adoption challenges of AI, particularly in urban services, which informs local authorities that deploy or plan to adopt AI in their urban services.


Doi: 10.28991/ESJ-2022-06-06-01

Full Text: PDF


Artificial Intelligence (AI); Public Perception; Urban Services; Urban Policy; Australia; Hong Kong.


Micozzi, N., & Yigitcanlar, T. (2022). Understanding Smart City Policy: Insights from the Strategy Documents of 52 Local Governments. Sustainability, 14(16), 10164. doi:10.3390/su141610164.

Hunter, M. G., Soro, A., Brown, R. A., Harman, J., & Yigitcanlar, T. (2022). Augmenting Community Engagement in City 4.0: Considerations for Digital Agency in Urban Public Space. Sustainability, 14(16), 9803. doi:10.3390/su14169803.

Joseph, R. C. (2013). A structured analysis of e-government studies: Trends and opportunities. Government Information Quarterly, 30(4), 435–440. doi:10.1016/j.giq.2013.05.006.

Lindgren, I., & Jansson, G. (2013). Electronic services in the public sector: A conceptual framework. Government Information Quarterly, 30(2), 163–172. doi:10.1016/j.giq.2012.10.005.

Yigitcanlar, T., & Cugurullo, F. (2020). The Sustainability of Artificial Intelligence: An Urbanistic Viewpoint from the Lens of Smart and Sustainable Cities. Sustainability, 12(20), 8548. doi:10.3390/su12208548.

Mitchell, M. (2021). Why AI is harder than we think. arXiv preprint arXiv:2104.12871. doi:10.48550/arXiv.2104.12871.

Jobin, A., Ienca, M., & Vayena, E. (2019). The global landscape of AI ethics guidelines. Nature Machine Intelligence, 1(9), 389–399. doi:10.1038/s42256-019-0088-2.

Fjeld, J., Achten, N., Hilligoss, H., Nagy, A., & Srikumar, M. (2020). Principled Artificial Intelligence: Mapping Consensus in Ethical and Rights-Based Approaches to Principles for AI. SSRN Electronic Journal. doi:10.2139/ssrn.3518482.

Chaturvedi, V., & de Vries, W. T. (2021). Machine Learning Algorithms for Urban Land Use Planning: A Review. Urban Science, 5(3), 68. doi:10.3390/urbansci5030068.

Yigitcanlar, T., Desouza, K. C., Butler, L., & Roozkhosh, F. (2020). Contributions and risks of artificial intelligence (AI) in building smarter cities: Insights from a systematic review of the literature. Energies, 13(6), 1473. doi:10.3390/en13061473.

Liu, L., Silva, E. A., Wu, C., & Wang, H. (2017). A machine learning-based method for the large-scale evaluation of the qualities of the urban environment. Computers, Environment and Urban Systems, 65, 113–125. doi:10.1016/j.compenvurbsys.2017.06.003.

Brei, V. A. (2020). Machine Learning in Marketing: Overview, Learning Strategies, Applications, and Future Developments. Foundations and Trends® in Marketing, 14(3), 173–236. doi:10.1561/1700000065.

Sepasgozar, S. M. E., Hawken, S., Sargolzaei, S., & Foroozanfa, M. (2019). Implementing citizen centric technology in developing smart cities: A model for predicting the acceptance of urban technologies. Technological Forecasting and Social Change, 142, 105–116. doi:10.1016/j.techfore.2018.09.012.

Nili, A., Desouza, K., & Yigitcanlar, T. (2022). What can the public sector teach us about deploying AI technologies? IEEE Software. doi:10.1007/10.1109/MS.2022.3193154.

Sanchez, T. W., Shumway, H., Gordner, T., & Lim, T. (2022). The prospects of artificial intelligence in urban planning. International Journal of Urban Sciences, 1–16. doi:10.1080/12265934.2022.2102538.

Yigitcanlar, T., Kankanamge, N., Regona, M., Ruiz Maldonado, A., Rowan, B., Ryu, A., … Li, R. Y. M. (2020). Artificial Intelligence Technologies and Related Urban Planning and Development Concepts: How Are They Perceived and Utilized in Australia? Journal of Open Innovation: Technology, Market, and Complexity, 6(4), 187. doi:10.3390/joitmc6040187.

Yigitcanlar, T., Mehmood, R., & Corchado, J. M. (2021). Green artificial intelligence: towards an efficient, sustainable and equitable technology for smart cities and futures. Sustainability, 13(16), 8952. doi:10.3390/su13168952.

Yigitcanlar, T., Agdas, D., & Degirmenci, K. (2022). Artificial intelligence in local governments: perceptions of city managers on prospects, constraints and choices. AI & SOCIETY. doi:10.1007/s00146-022-01450-x.

Kenworthy, L. (2022). AI across the world: top 10 cities in 2019. Available online: (accessed on April 2022).

Vesnic-Alujevic, L., Nascimento, S., & Pólvora, A. (2020). Societal and ethical impacts of artificial intelligence: Critical notes on European policy frameworks. Telecommunications Policy, 44(6), 101961. doi:10.1016/j.telpol.2020.101961.

Chen, H., Li, L., & Chen, Y. (2021). Explore success factors that impact artificial intelligence adoption on telecom industry in China. Journal of Management Analytics, 8(1), 36–68. doi:10.1080/23270012.2020.1852895.

M., K., & S., F. (2016). Ensuring Security and Privacy for Cloud-based E-Services. International Journal of Computer Applications, 149(11), 8–13. doi:10.5120/ijca2016911597.

Desouza, K. C., Dawson, G. S., & Chenok, D. (2020). Designing, developing, and deploying artificial intelligence systems: Lessons from and for the public sector. Business Horizons, 63(2), 205–213. doi:10.1016/j.bushor.2019.11.004.

Damoah, I. S., Ayakwah, A., & Tingbani, I. (2021). Artificial intelligence (AI)-enhanced medical drones in the healthcare supply chain (HSC) for sustainability development: A case study. Journal of Cleaner Production, 328, 129598. doi:10.1016/j.jclepro.2021.129598.

Vilhjalmsson, R. (2016). Public views on the role of government in funding and delivering health services. Scandinavian Journal of Public Health, 44(5), 446–454. doi:10.1177/1403494816631872.

Yildiz, M. (2007). E-government research: Reviewing the literature, limitations, and ways forward. Government Information Quarterly, 24(3), 646–665. doi:10.1016/j.giq.2007.01.002.

Zhu, W. (2021). Artificial Intelligence and Urban Governance: Risk Conflict and Strategy Choice. Open Journal of Social Sciences, 09(04), 250–261. doi:10.4236/jss.2021.94019.

Mou, J., Shin, D. H., & Cohen, J. (2017). Understanding trust and perceived usefulness in the consumer acceptance of an e-service: a longitudinal investigation. Behaviour and Information Technology, 36(2), 125–139. doi:10.1080/0144929X.2016.1203024.

Sun, T. Q., & Medaglia, R. (2019). Mapping the challenges of Artificial Intelligence in the public sector: Evidence from public healthcare. Government Information Quarterly, 36(2), 368–383. doi:10.1016/j.giq.2018.09.008.

Wirtz, B. W., Weyerer, J. C., & Geyer, C. (2019). Artificial Intelligence and the Public Sector—Applications and Challenges. International Journal of Public Administration, 42(7), 596–615. doi:10.1080/01900692.2018.1498103.

Zhang, W., Zuo, N., He, W., Li, S., & Yu, L. (2021). Factors influencing the use of artificial intelligence in government: Evidence from China. Technology in Society, 66, 101675. doi:10.1016/j.techsoc.2021.101675.

Yigitcanlar, T. (2021). Greening the artificial intelligence for a sustainable planet: An editorial commentary. Sustainability, 13(24), 13508. doi:10.3390/su132413508.

McGraw, G., Figueroa, H., Shepardson, V., & Bonett, R. (2020). An architectural risk analysis of machine learning systems: Toward more secure machine learning. Berryville Institute of Machine Learning, Clarke County, United States.

Kuziemski, M., & Misuraca, G. (2020). AI governance in the public sector: Three tales from the frontiers of automated decision-making in democratic settings. Telecommunications Policy, 44(6), 101976. doi:10.1016/j.telpol.2020.101976.

Dobransky, K., & Hargittai, E. (2006). The disability divide in internet access and use. Information Communication and Society, 9(3), 313–334. doi:10.1080/13691180600751298.

James, J. (2008). Digital divide complacency: Misconceptions and dangers. Information Society, 24(1), 54–61. doi:10.1080/01972240701774790.

Vicente, M. R., & López, A. J. (2011). Assessing the regional digital divide across the European Union-27. Telecommunications Policy, 35(3), 220–237. doi:10.1016/j.telpol.2010.12.013.

West, D. M. (2004). E-Government and the Transformation of Service Delivery and Citizen Attitudes. Public Administration Review, 64(1), 15–27. doi:10.1111/j.1540-6210.2004.00343.x.

West, D. M. (2005). Digital government: Technology and public sector performance. Princeton University Press, Princeton, United States.

Carter, L., & Bélanger, F. (2005). The utilization of e-government services: Citizen Trust, innovation and acceptance factors. Information Systems Journal, 15(1), 5–25. doi:10.1111/j.1365-2575.2005.00183.x.

Kankanamge, N., Yigitcanlar, T., & Goonetilleke, A. (2021). Public perceptions on artificial intelligence driven disaster management: Evidence from Sydney, Melbourne and Brisbane. Telematics and Informatics, 65, 101729. doi:10.1016/j.tele.2021.101729.

Margetts, H., & Dorobantu, C. (2019). Rethink government with AI. Nature, 568(7751), 163–165. doi:10.1038/d41586-019-01099-5.

Yigitcanlar, T., Corchado, J. M., Mehmood, R., Li, R. Y. M., Mossberger, K., & Desouza, K. (2021). Responsible urban innovation with local government artificial intelligence (AI): A conceptual framework and research agenda. Journal of Open Innovation: Technology, Market, and Complexity, 7(1), 1–16. doi:10.3390/joitmc7010071.

Seale, J., Georgeson, J., Mamas, C., & Swain, J. (2015). Not the right kind of “digital capital”? An examination of the complex relationship between disabled students, their technologies and higher education institutions. Computers and Education, 82, 118–128. doi:10.1016/j.compedu.2014.11.007.

Ashraf, C. (2022). Exploring the impacts of artificial intelligence on freedom of religion or belief online. International Journal of Human Rights, 26(5), 757–791. doi:10.1080/13642987.2021.1968376.

Liu, X., & Murphy, D. (2020). A Multi-Faceted Approach for Trustworthy AI in Cybersecurity. Journal of Strategic Innovation and Sustainability, 15(6), 68–78. doi:10.33423/jsis.v15i6.3596.

Cugurullo, F. (2020). Urban Artificial Intelligence: From Automation to Autonomy in the Smart City. Frontiers in Sustainable Cities, 2, 38. doi:10.3389/frsc.2020.00038.

Van Der Wee, M., Verbrugge, S., Sadowski, B., Driesse, M., & Pickavet, M. (2015). Identifying and quantifying the indirect benefits of broadband networks for e-government and e-business: A bottom-up approach. Telecommunications Policy, 39(3–4), 176–191. doi:10.1016/j.telpol.2013.12.006.

Inkinen, T. (2012). Best practices of the Finnish Government Information Society Policy Programme: Technology, provision, and impact scale. Transforming Government: People, Process and Policy, 6(2), 167–187. doi:10.1108/17506161211246917.

Duan, Y., Edwards, J. S., & Dwivedi, Y. K. (2019). Artificial intelligence for decision making in the era of Big Data – evolution, challenges and research agenda. International Journal of Information Management, 48, 63–71. doi:10.1016/j.ijinfomgt.2019.01.021.

Yigitcanlar, T., Butler, L., Windle, E., Desouza, K. C., Mehmood, R., & Corchado, J. M. (2020). Can building “artificially intelligent cities” safeguard humanity from natural disasters, pandemics, and other catastrophes? An urban scholar’s perspective. Sensors, 20(10), 2988. doi:10.3390/s20102988.

Toll, D., Lindgren, I., Melin, U., & Madsen, C. (2020). Values, benefits, considerations and risks of AI in government: A study of AI policy documents in Sweden. E-Journal of E-Democracy and Open Government, 12(1), 40–60. doi:10.29379/jedem.v12i1.593.

Lean, O. K., Zailani, S., Ramayah, T., & Fernando, Y. (2009). Factors influencing intention to use e-government services among citizens in Malaysia. International Journal of Information Management, 29(6), 458–475. doi:10.1016/j.ijinfomgt.2009.03.012.

Taipale, S. (2013). The use of e-government services and the Internet: The role of socio-demographic, economic and geographical predictors. Telecommunications Policy, 37(4–5), 413–422. doi:10.1016/j.telpol.2012.05.005.

Inkinen, T., Merisalo, M., & Makkonen, T. (2018). Variations in the adoption and willingness to use e-services in three differentiated urban areas. European Planning Studies, 26(5), 950–968. doi:10.1080/09654313.2018.1448756.

Krejcie, R. V., & Morgan, D. W. (1970). Determining Sample Size for Research Activities. Educational and Psychological Measurement, 30(3), 607–610. doi:10.1177/001316447003000308.

Mikalef, P., Fjørtoft, S.O., Torvatn, H.Y. (2019). Artificial Intelligence in the Public Sector: A Study of Challenges and Opportunities for Norwegian Municipalities. Digital Transformation for a Sustainable Society in the 21st Century. I3E 2019. Lecture Notes in Computer Science, 11701. Springer, Cham, Switzerland. doi:10.1007/978-3-030-29374-1_22.

Schaefer, C., Lemmer, K., Samy Kret, K., Ylinen, M., Mikalef, P., & Niehaves, B. (2021). Truth or Dare? – How can we Influence the Adoption of Artificial Intelligence in Municipalities? Proceedings of the 54th Hawaii International Conference on System Sciences. doi:10.24251/hicss.2021.286.

Regona, M., Yigitcanlar, T., Xia, B., & Li, R. Y. M. (2022). Artificial Intelligent Technologies for the Construction Industry: How Are They Perceived and Utilized in Australia? Journal of Open Innovation: Technology, Market, and Complexity, 8(1), 16. doi:10.3390/joitmc8010016.

Regona, M., Yigitcanlar, T., Xia, B., & Li, R. Y. M. (2022). Opportunities and Adoption Challenges of AI in the Construction Industry: A PRISMA Review. Journal of Open Innovation: Technology, Market, and Complexity, 8(1), 45. doi:10.3390/joitmc8010045.

Lutz, C. (2019). Digital inequalities in the age of artificial intelligence and big data. Human Behavior and Emerging Technologies, 1(2), 141–148. doi:10.1002/hbe2.140.

Cugurullo, F. (2021). Frankenstein urbanism: Eco, smart and autonomous cities, artificial intelligence and the end of the city (1st Ed.). Routledge, United Kingdom. doi:10.4324/9781315652627.

Yigitcanlar, T., Degirmenci, K., Butler, L., & Desouza, K. C. (2022). What are the key factors affecting smart city transformation readiness? Evidence from Australian cities. Cities, 120, 103434. doi:10.1016/j.cities.2021.103434.

Barredo Arrieta, A., Díaz-Rodríguez, N., Del Ser, J., Bennetot, A., Tabik, S., Barbado, A., … Herrera, F. (2020). Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI. Information Fusion, 58, 82–115. doi:10.1016/j.inffus.2019.12.012.

Chatterjee, S. (2020). AI strategy of India: policy framework, adoption challenges and actions for government. Transforming Government: People, Process and Policy, 14(5), 757–775. doi:10.1108/TG-05-2019-0031.

Full Text: PDF

DOI: 10.28991/ESJ-2022-06-06-01


  • There are currently no refbacks.

Copyright (c) 2022 Tan Yigitcanlar, Alexander Paz, Rita Yi Man Li, Tommi Inkinen