Public Perceptions on Application Areas and Adoption Challenges of AI in Urban Services
Abstract
Doi: 10.28991/ESJ-2022-06-06-01
Full Text: PDF
Keywords
References
Micozzi, N., & Yigitcanlar, T. (2022). Understanding Smart City Policy: Insights from the Strategy Documents of 52 Local Governments. Sustainability, 14(16), 10164. doi:10.3390/su141610164.
Hunter, M. G., Soro, A., Brown, R. A., Harman, J., & Yigitcanlar, T. (2022). Augmenting Community Engagement in City 4.0: Considerations for Digital Agency in Urban Public Space. Sustainability, 14(16), 9803. doi:10.3390/su14169803.
Joseph, R. C. (2013). A structured analysis of e-government studies: Trends and opportunities. Government Information Quarterly, 30(4), 435–440. doi:10.1016/j.giq.2013.05.006.
Lindgren, I., & Jansson, G. (2013). Electronic services in the public sector: A conceptual framework. Government Information Quarterly, 30(2), 163–172. doi:10.1016/j.giq.2012.10.005.
Yigitcanlar, T., & Cugurullo, F. (2020). The Sustainability of Artificial Intelligence: An Urbanistic Viewpoint from the Lens of Smart and Sustainable Cities. Sustainability, 12(20), 8548. doi:10.3390/su12208548.
Mitchell, M. (2021). Why AI is harder than we think. arXiv preprint arXiv:2104.12871. doi:10.48550/arXiv.2104.12871.
Jobin, A., Ienca, M., & Vayena, E. (2019). The global landscape of AI ethics guidelines. Nature Machine Intelligence, 1(9), 389–399. doi:10.1038/s42256-019-0088-2.
Fjeld, J., Achten, N., Hilligoss, H., Nagy, A., & Srikumar, M. (2020). Principled Artificial Intelligence: Mapping Consensus in Ethical and Rights-Based Approaches to Principles for AI. SSRN Electronic Journal. doi:10.2139/ssrn.3518482.
Chaturvedi, V., & de Vries, W. T. (2021). Machine Learning Algorithms for Urban Land Use Planning: A Review. Urban Science, 5(3), 68. doi:10.3390/urbansci5030068.
Yigitcanlar, T., Desouza, K. C., Butler, L., & Roozkhosh, F. (2020). Contributions and risks of artificial intelligence (AI) in building smarter cities: Insights from a systematic review of the literature. Energies, 13(6), 1473. doi:10.3390/en13061473.
Liu, L., Silva, E. A., Wu, C., & Wang, H. (2017). A machine learning-based method for the large-scale evaluation of the qualities of the urban environment. Computers, Environment and Urban Systems, 65, 113–125. doi:10.1016/j.compenvurbsys.2017.06.003.
Brei, V. A. (2020). Machine Learning in Marketing: Overview, Learning Strategies, Applications, and Future Developments. Foundations and Trends® in Marketing, 14(3), 173–236. doi:10.1561/1700000065.
Sepasgozar, S. M. E., Hawken, S., Sargolzaei, S., & Foroozanfa, M. (2019). Implementing citizen centric technology in developing smart cities: A model for predicting the acceptance of urban technologies. Technological Forecasting and Social Change, 142, 105–116. doi:10.1016/j.techfore.2018.09.012.
Nili, A., Desouza, K., & Yigitcanlar, T. (2022). What can the public sector teach us about deploying AI technologies? IEEE Software. doi:10.1007/10.1109/MS.2022.3193154.
Sanchez, T. W., Shumway, H., Gordner, T., & Lim, T. (2022). The prospects of artificial intelligence in urban planning. International Journal of Urban Sciences, 1–16. doi:10.1080/12265934.2022.2102538.
Yigitcanlar, T., Kankanamge, N., Regona, M., Ruiz Maldonado, A., Rowan, B., Ryu, A., … Li, R. Y. M. (2020). Artificial Intelligence Technologies and Related Urban Planning and Development Concepts: How Are They Perceived and Utilized in Australia? Journal of Open Innovation: Technology, Market, and Complexity, 6(4), 187. doi:10.3390/joitmc6040187.
Yigitcanlar, T., Mehmood, R., & Corchado, J. M. (2021). Green artificial intelligence: towards an efficient, sustainable and equitable technology for smart cities and futures. Sustainability, 13(16), 8952. doi:10.3390/su13168952.
Yigitcanlar, T., Agdas, D., & Degirmenci, K. (2022). Artificial intelligence in local governments: perceptions of city managers on prospects, constraints and choices. AI & SOCIETY. doi:10.1007/s00146-022-01450-x.
Kenworthy, L. (2022). AI across the world: top 10 cities in 2019. Available online: https://blog.re-work.co/blog-post-top-10-cities-in-ai/ (accessed on April 2022).
Vesnic-Alujevic, L., Nascimento, S., & Pólvora, A. (2020). Societal and ethical impacts of artificial intelligence: Critical notes on European policy frameworks. Telecommunications Policy, 44(6), 101961. doi:10.1016/j.telpol.2020.101961.
Chen, H., Li, L., & Chen, Y. (2021). Explore success factors that impact artificial intelligence adoption on telecom industry in China. Journal of Management Analytics, 8(1), 36–68. doi:10.1080/23270012.2020.1852895.
M., K., & S., F. (2016). Ensuring Security and Privacy for Cloud-based E-Services. International Journal of Computer Applications, 149(11), 8–13. doi:10.5120/ijca2016911597.
Desouza, K. C., Dawson, G. S., & Chenok, D. (2020). Designing, developing, and deploying artificial intelligence systems: Lessons from and for the public sector. Business Horizons, 63(2), 205–213. doi:10.1016/j.bushor.2019.11.004.
Damoah, I. S., Ayakwah, A., & Tingbani, I. (2021). Artificial intelligence (AI)-enhanced medical drones in the healthcare supply chain (HSC) for sustainability development: A case study. Journal of Cleaner Production, 328, 129598. doi:10.1016/j.jclepro.2021.129598.
Vilhjalmsson, R. (2016). Public views on the role of government in funding and delivering health services. Scandinavian Journal of Public Health, 44(5), 446–454. doi:10.1177/1403494816631872.
Yildiz, M. (2007). E-government research: Reviewing the literature, limitations, and ways forward. Government Information Quarterly, 24(3), 646–665. doi:10.1016/j.giq.2007.01.002.
Zhu, W. (2021). Artificial Intelligence and Urban Governance: Risk Conflict and Strategy Choice. Open Journal of Social Sciences, 09(04), 250–261. doi:10.4236/jss.2021.94019.
Mou, J., Shin, D. H., & Cohen, J. (2017). Understanding trust and perceived usefulness in the consumer acceptance of an e-service: a longitudinal investigation. Behaviour and Information Technology, 36(2), 125–139. doi:10.1080/0144929X.2016.1203024.
Sun, T. Q., & Medaglia, R. (2019). Mapping the challenges of Artificial Intelligence in the public sector: Evidence from public healthcare. Government Information Quarterly, 36(2), 368–383. doi:10.1016/j.giq.2018.09.008.
Wirtz, B. W., Weyerer, J. C., & Geyer, C. (2019). Artificial Intelligence and the Public Sector—Applications and Challenges. International Journal of Public Administration, 42(7), 596–615. doi:10.1080/01900692.2018.1498103.
Zhang, W., Zuo, N., He, W., Li, S., & Yu, L. (2021). Factors influencing the use of artificial intelligence in government: Evidence from China. Technology in Society, 66, 101675. doi:10.1016/j.techsoc.2021.101675.
Yigitcanlar, T. (2021). Greening the artificial intelligence for a sustainable planet: An editorial commentary. Sustainability, 13(24), 13508. doi:10.3390/su132413508.
McGraw, G., Figueroa, H., Shepardson, V., & Bonett, R. (2020). An architectural risk analysis of machine learning systems: Toward more secure machine learning. Berryville Institute of Machine Learning, Clarke County, United States.
Kuziemski, M., & Misuraca, G. (2020). AI governance in the public sector: Three tales from the frontiers of automated decision-making in democratic settings. Telecommunications Policy, 44(6), 101976. doi:10.1016/j.telpol.2020.101976.
Dobransky, K., & Hargittai, E. (2006). The disability divide in internet access and use. Information Communication and Society, 9(3), 313–334. doi:10.1080/13691180600751298.
James, J. (2008). Digital divide complacency: Misconceptions and dangers. Information Society, 24(1), 54–61. doi:10.1080/01972240701774790.
Vicente, M. R., & López, A. J. (2011). Assessing the regional digital divide across the European Union-27. Telecommunications Policy, 35(3), 220–237. doi:10.1016/j.telpol.2010.12.013.
West, D. M. (2004). E-Government and the Transformation of Service Delivery and Citizen Attitudes. Public Administration Review, 64(1), 15–27. doi:10.1111/j.1540-6210.2004.00343.x.
West, D. M. (2005). Digital government: Technology and public sector performance. Princeton University Press, Princeton, United States.
Carter, L., & Bélanger, F. (2005). The utilization of e-government services: Citizen Trust, innovation and acceptance factors. Information Systems Journal, 15(1), 5–25. doi:10.1111/j.1365-2575.2005.00183.x.
Kankanamge, N., Yigitcanlar, T., & Goonetilleke, A. (2021). Public perceptions on artificial intelligence driven disaster management: Evidence from Sydney, Melbourne and Brisbane. Telematics and Informatics, 65, 101729. doi:10.1016/j.tele.2021.101729.
Margetts, H., & Dorobantu, C. (2019). Rethink government with AI. Nature, 568(7751), 163–165. doi:10.1038/d41586-019-01099-5.
Yigitcanlar, T., Corchado, J. M., Mehmood, R., Li, R. Y. M., Mossberger, K., & Desouza, K. (2021). Responsible urban innovation with local government artificial intelligence (AI): A conceptual framework and research agenda. Journal of Open Innovation: Technology, Market, and Complexity, 7(1), 1–16. doi:10.3390/joitmc7010071.
Seale, J., Georgeson, J., Mamas, C., & Swain, J. (2015). Not the right kind of “digital capital”? An examination of the complex relationship between disabled students, their technologies and higher education institutions. Computers and Education, 82, 118–128. doi:10.1016/j.compedu.2014.11.007.
Ashraf, C. (2022). Exploring the impacts of artificial intelligence on freedom of religion or belief online. International Journal of Human Rights, 26(5), 757–791. doi:10.1080/13642987.2021.1968376.
Liu, X., & Murphy, D. (2020). A Multi-Faceted Approach for Trustworthy AI in Cybersecurity. Journal of Strategic Innovation and Sustainability, 15(6), 68–78. doi:10.33423/jsis.v15i6.3596.
Cugurullo, F. (2020). Urban Artificial Intelligence: From Automation to Autonomy in the Smart City. Frontiers in Sustainable Cities, 2, 38. doi:10.3389/frsc.2020.00038.
Van Der Wee, M., Verbrugge, S., Sadowski, B., Driesse, M., & Pickavet, M. (2015). Identifying and quantifying the indirect benefits of broadband networks for e-government and e-business: A bottom-up approach. Telecommunications Policy, 39(3–4), 176–191. doi:10.1016/j.telpol.2013.12.006.
Inkinen, T. (2012). Best practices of the Finnish Government Information Society Policy Programme: Technology, provision, and impact scale. Transforming Government: People, Process and Policy, 6(2), 167–187. doi:10.1108/17506161211246917.
Duan, Y., Edwards, J. S., & Dwivedi, Y. K. (2019). Artificial intelligence for decision making in the era of Big Data – evolution, challenges and research agenda. International Journal of Information Management, 48, 63–71. doi:10.1016/j.ijinfomgt.2019.01.021.
Yigitcanlar, T., Butler, L., Windle, E., Desouza, K. C., Mehmood, R., & Corchado, J. M. (2020). Can building “artificially intelligent cities” safeguard humanity from natural disasters, pandemics, and other catastrophes? An urban scholar’s perspective. Sensors, 20(10), 2988. doi:10.3390/s20102988.
Toll, D., Lindgren, I., Melin, U., & Madsen, C. (2020). Values, benefits, considerations and risks of AI in government: A study of AI policy documents in Sweden. E-Journal of E-Democracy and Open Government, 12(1), 40–60. doi:10.29379/jedem.v12i1.593.
Lean, O. K., Zailani, S., Ramayah, T., & Fernando, Y. (2009). Factors influencing intention to use e-government services among citizens in Malaysia. International Journal of Information Management, 29(6), 458–475. doi:10.1016/j.ijinfomgt.2009.03.012.
Taipale, S. (2013). The use of e-government services and the Internet: The role of socio-demographic, economic and geographical predictors. Telecommunications Policy, 37(4–5), 413–422. doi:10.1016/j.telpol.2012.05.005.
Inkinen, T., Merisalo, M., & Makkonen, T. (2018). Variations in the adoption and willingness to use e-services in three differentiated urban areas. European Planning Studies, 26(5), 950–968. doi:10.1080/09654313.2018.1448756.
Krejcie, R. V., & Morgan, D. W. (1970). Determining Sample Size for Research Activities. Educational and Psychological Measurement, 30(3), 607–610. doi:10.1177/001316447003000308.
Mikalef, P., Fjørtoft, S.O., Torvatn, H.Y. (2019). Artificial Intelligence in the Public Sector: A Study of Challenges and Opportunities for Norwegian Municipalities. Digital Transformation for a Sustainable Society in the 21st Century. I3E 2019. Lecture Notes in Computer Science, 11701. Springer, Cham, Switzerland. doi:10.1007/978-3-030-29374-1_22.
Schaefer, C., Lemmer, K., Samy Kret, K., Ylinen, M., Mikalef, P., & Niehaves, B. (2021). Truth or Dare? – How can we Influence the Adoption of Artificial Intelligence in Municipalities? Proceedings of the 54th Hawaii International Conference on System Sciences. doi:10.24251/hicss.2021.286.
Regona, M., Yigitcanlar, T., Xia, B., & Li, R. Y. M. (2022). Artificial Intelligent Technologies for the Construction Industry: How Are They Perceived and Utilized in Australia? Journal of Open Innovation: Technology, Market, and Complexity, 8(1), 16. doi:10.3390/joitmc8010016.
Regona, M., Yigitcanlar, T., Xia, B., & Li, R. Y. M. (2022). Opportunities and Adoption Challenges of AI in the Construction Industry: A PRISMA Review. Journal of Open Innovation: Technology, Market, and Complexity, 8(1), 45. doi:10.3390/joitmc8010045.
Lutz, C. (2019). Digital inequalities in the age of artificial intelligence and big data. Human Behavior and Emerging Technologies, 1(2), 141–148. doi:10.1002/hbe2.140.
Cugurullo, F. (2021). Frankenstein urbanism: Eco, smart and autonomous cities, artificial intelligence and the end of the city (1st Ed.). Routledge, United Kingdom. doi:10.4324/9781315652627.
Yigitcanlar, T., Degirmenci, K., Butler, L., & Desouza, K. C. (2022). What are the key factors affecting smart city transformation readiness? Evidence from Australian cities. Cities, 120, 103434. doi:10.1016/j.cities.2021.103434.
Barredo Arrieta, A., Díaz-Rodríguez, N., Del Ser, J., Bennetot, A., Tabik, S., Barbado, A., … Herrera, F. (2020). Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI. Information Fusion, 58, 82–115. doi:10.1016/j.inffus.2019.12.012.
Chatterjee, S. (2020). AI strategy of India: policy framework, adoption challenges and actions for government. Transforming Government: People, Process and Policy, 14(5), 757–775. doi:10.1108/TG-05-2019-0031.
DOI: 10.28991/ESJ-2022-06-06-01
Refbacks
- There are currently no refbacks.