The Role of Technology in the Learning Process: A Decision Tree-Based Model Using Machine Learning

Yuri V. S. Mendonça, Paola G. Vinueza Naranjo, Diego Costa Pinto


Machine learning approaches may establish a complex and non-linear relationship among input and response variables for the assessment of the Basic Education Development Index (IDEB) database and show indicators that may contribute to monitoring the quality of education. This paper uses extensive experimental databases from public schools, consisting of a case study in Brazil, to analyze data such as the physical and technological structure of schools and teacher profiles. The research proposes decision tree-based machine learning models for predictions of the best attributes to positively contribute to IDEB. It employs a newly developed SHapley Additive exPlanations (SHAP) approach to classify input variables, so to identify variables that impact the most the final model; a non-probabilistic sample was used, composed from three official databases of 450 schools, and 617 teachers. Results show that the number of computers per student, teachers’ service time, broadband internet access, investments in technology training for teachers, and computer labs in schools are the variables that have the greatest effect on IDEB. The model applied shows high prediction accuracy for test data (MSE = 0.2094 and R² = 0.8991). This article contributes to improving efficiency when monitoring parameters used to measure the quality of a teaching-learning process.


Doi: 10.28991/ESJ-2022-SIED-020

Full Text: PDF


Decision Tree; IDEB; Machine Learning Approaches; School Infrastructure; Teacher Profile; Learning Strategies.


Raffaghelli, J. E., Rodríguez, M. E., Guerrero-Roldán, A. E., & Bañeres, D. (2022). Applying the UTAUT model to explain the students’ acceptance of an early warning system in Higher Education. Computers and Education, 182, 104468. doi:10.1016/j.compedu.2022.104468.

Barrett, P., Treves, A., Shmis, T., Ambasz, D., & Ustinova, M. (2019). The Impact of School Infrastructure on Learning: A Synthesis of the Evidence. In The Impact of School Infrastructure on Learning: A Synthesis of the Evidence. The World Bank, Washington, United States. doi:10.1596/978-1-4648-1378-8.

Li, S., & Liu, T. (2021). Performance Prediction for Higher Education Students Using Deep Learning. Complexity, 2021. doi:10.1155/2021/9958203.

Fernandez Rivas, D., Boffito, D. C., Faria-Albanese, J., Glassey, J., Cantin, J., Afraz, N., Akse, H., Boodhoo, K. V. K., Bos, R., Chiang, Y. W., Commenge, J. M., Dubois, J. L., Galli, F., Harmsen, J., Kalra, S., Keil, F., Morales-Menendez, R., Navarro-Brull, F. J., Noël, T., … Weber, R. S. (2020). Process intensification education contributes to sustainable development goals. Part 2. Education for Chemical Engineers, 32, 15–24. doi:10.1016/j.ece.2020.05.001.

Matzavela, V., & Alepis, E. (2021). Decision tree learning through a Predictive Model for Student Academic Performance in Intelligent M-Learning environments. Computers and Education: Artificial Intelligence, 2, 100035. doi:10.1016/j.caeai.2021.100035.

Jiang, X. (2021). Online English Teaching Course Score Analysis Based on Decision Tree Mining Algorithm. Complexity, 2021, 1–10. doi:10.1155/2021/5577167.

SEDUC (2020). Secretary of States for Education. State office of education in Belém, Brazil. Available online: (accessed on May 2022). (In Portuguese).

Ajayi, I. A., & Ekundayo, H. T. (2011). Factors determining the effectiveness of secondary schools in nigeria. Anthropologist, 13(1), 33–38. doi:10.1080/09720073.2011.11891174.

Pangeni, K. P. (2014). Factors determining educational quality: Student mathematics achievement in Nepal. International Journal of Educational Development, 34(1), 30–41. doi:10.1016/j.ijedudev.2013.03.001.

Khanna, L., Singh, S. N., & Alam, M. (2016). Educational data mining and its role in determining factors affecting students academic performance: A systematic review. 2016 1st India International Conference on Information Processing (IICIP). doi:10.1109/iicip.2016.7975354.

Byeon, H. (2017). Chi-Square Automatic Interaction Detection Modeling for Predicting Depression in Multicultural Female Students. International Journal of Advanced Computer Science and Applications, 8(12), 179–183. doi:10.14569/ijacsa.2017.081222.

Chicco, D., Warrens, M. J., & Jurman, G. (2021). The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation. PeerJ Computer Science, 7, 1–24. doi:10.7717/PEERJ-CS.623.

Parreñas, R. (2020). The International Division of Reproductive Labor. In Servants of Globalization. Servants of Globalization, Stanford University Press, Redwood City, United States. doi:10.1515/9780804796187-003.

Shamim, A., Hussain, H., & Maqbool Uddin Shaikh. (2010). A framework for generation of rules from decision tree and decision table. 2010 International Conference on Information and Emerging Technologies. doi:10.1109/iciet.2010.5625700.

Priyanka, & Kumar, D. (2020). Decision tree classifier: A detailed survey. International Journal of Information and Decision Sciences, 12(3), 246–269. doi:10.1504/ijids.2020.108141.

Liang, J., Qin, Z., Xiao, S., Ou, L., & Lin, X. (2021). Efficient and Secure Decision Tree Classification for Cloud-Assisted Online Diagnosis Services. IEEE Transactions on Dependable and Secure Computing, 18(4), 1632–1644. doi:10.1109/TDSC.2019.2922958.

Alves, M. da C. P., Barros, R. C. B. de, & Carrozza, G. (2018). O Ideb e seus efeitos de sentido na Educação Básica do Brasil. Interfaces, 9(2), 29–40. doi:10.5935/2179-0027.20180020. (In Portuguese).

de Carvalho, M. R. V. (2018). Basic education teacher profile. Relatos de Pesquisa, (41), 68-68. (In Portuguese).

Batunacun, Wieland, R., Lakes, T., & Nendel, C. (2021). Using Shapley additive explanations to interpret extreme gradient boosting predictions of grassland degradation in Xilingol, China. Geoscientific Model Development, 14(3), 1493–1510. doi:10.5194/gmd-14-1493-2021.

Chávez Hernani, M., & Vieira, S. D. R. (2020). Reflexões sobre os cursos de Formação de Professores no Peru e no Brasil. Educación, 29(57). doi:10.18800/educacion.202002.001. (In Portuguese).

Klassen, R. M., Durksen, T. L., Al Hashmi, W., Kim, L. E., Longden, K., Metsäpelto, R. L., Poikkeus, A. M., & Györi, J. G. (2018). National context and teacher characteristics: Exploring the critical non-cognitive attributes of novice teachers in four countries. Teaching and Teacher Education, 72, 64–74. doi:10.1016/j.tate.2018.03.001.

Cattaneo, A. A. P., Antonietti, C., & Rauseo, M. (2022). How digitalised are vocational teachers? Assessing digital competence in vocational education and looking at its underlying factors. Computers and Education, 176, 104358. doi:10.1016/j.compedu.2021.104358.

Elacqua, G., & Marotta, L. (2020). Is working one job better than many? Assessing the impact of multiple school jobs on teacher performance in Rio de Janeiro. Economics of Education Review, 78, 102015. doi:10.1016/j.econedurev.2020.102015.

Ronfeldt, M., Loeb, S., & Wyckoff, J. (2013). How Teacher Turnover Harms Student Achievement. American Educational Research Journal, 50(1), 4–36. doi:10.3102/0002831212463813.

Breiman, L., Friedman, J., Olshen, R., & Stone, C. (1984). Classification and regression trees. CRC Press, Boca Raton, United States.

Loh, W. (2011). Classification and regression trees. WIREs Data Mining and Knowledge Discovery, 1(1), 14–23. Portico. doi:10.1002/widm.8.

Timofeev, R. (2004). Classification and regression trees (CART) theory and applications. Humboldt University, Berlin, Germany.

Codo, W. (2006). For a Psychology of Work: Essays. Casa do Psicólogo, Brazil. (In Portuguese).

Soper, D. S. (2021). Greed is good: Rapid hyperparameter optimization and model selection using greedy k-fold cross validation. Electronics (Switzerland), 10(16). doi:10.3390/electronics10161973.

Verwer, S., Zhang, Y. (2017). Learning Decision Trees with Flexible Constraints and Objectives Using Integer Optimization. Integration of AI and OR Techniques in Constraint Programming. CPAIOR 2017. Lecture Notes in Computer Science, 10335, Springer, Cham, Switzerland. doi:10.1007/978-3-319-59776-8_8.

Frazier, P. I. (2018). A tutorial on Bayesian optimization. arXiv Preprint, arXiv:1807.02811. doi:10.48550/arXiv.1807.02811.

Full Text: PDF

DOI: 10.28991/ESJ-2022-SIED-020


  • There are currently no refbacks.

Copyright (c) 2022 Diego Pinto