Big Data Analytics and Auditing: A Review and Synthesis of Literature

Yaseen A. A. Hezam, Lilian Anthonysamy, Susela Devi K. Suppiah


The use of data analytics in auditing is increasingly growing. The application of common data analytics to audit engagements appears to be lagging behind other areas of practice, even though data analytics is thought to represent the future of audit, and there are still few publications that have examined this influence. This article reviews data analytics in audits and its potential for future audit engagements to describe the evolution of this research trend and picture its future growth directions. Future audit research potential and difficulties are also discussed. Data analytics application in auditing has enormous potential for refining audit quality, decreasing errors, increasing process transparency, and enhancing stakeholders’ confidence. We conducted a systematic literature review using the PRISMA approach. A total of 100 articles published in English from January 2011 to November 2021 were identified through a systematic search of reputed databases, including Web of Science and Scopus and many others. Our analysis reveals that data analytics is a promising domain for the auditing practice as it improves audit efficiency and promotes audit work digital transformation. While reviewing the most pertinent literature in the context of data analytics in auditing, this study offers insights on potential new directions and waning views on big data analytics in auditing.


Doi: 10.28991/ESJ-2023-07-02-023

Full Text: PDF


Data Analytics; Big Data; Analytics in Auditing; Future Audit Practice; Auditing Profession; Auditor Competencies.


Alles, M. G. (2015). Drivers of the use and facilitators and obstacles of the evolution of big data by the audit profession. Accounting Horizons, 29(2), 439–449. doi:10.2308/acch-51067.

Justenhoven, P., Sechser, J., & Loitz, R. (2017). Digital Audits of Financial Statement: Study on the use of technology in finance and accounting. PricewaterhouseCoopers GmbH WPG, Berlin, Germany.

Chedrawi, C., & Howayeck, P. (2018). Audit in the Blockchain era within a principal-agent approach. Information and Communication Technologies in Organizations and Society (ICTO 2018):“Information and Communications Technologies for an Inclusive World, University Paris Nanterre - Pole Léonard de Vinci, Paris-France.

Abbott, L. J., Daugherty, B., Parker, S., & Peters, G. F. (2016). Internal Audit Quality and Financial Reporting Quality: The Joint Importance of Independence and Competence. Journal of Accounting Research, 54(1), 3–40. doi:10.1111/1475-679X.12099.

De Santis, F., & D’Onza, G. (2021). Big data and data analytics in auditing: in search of legitimacy. Meditari Accountancy Research, 29(5), 1088–1112. doi:10.1108/medar-03-2020-0838.

Lleo, S., & Ziemba, W. T. (2020). Stock Market Crashes in 2006–2009: Were We Able to Predict Them? World Scientific Handbook in Financial Economics Series, Handbook of Applied Investment Research, 323–353, World Scientific, Singapore. doi:10.1142/9789811222634_0015.

Yoon, K., Hoogduin, L., & Zhang, L. (2015). Big data as complementary audit evidence. Accounting Horizons, 29(2), 431–438. doi:10.2308/acch-51076.

Byrnes, P. E., Al-Awadhi, A., Gullvist, B., Brown-Liburd, H., Teeter, R., Warren, J. D., & Vasarhelyi, M. (2018). Evolution of Auditing: From the Traditional Approach to the Future Audit. Continuous Auditing, 285–297. doi:10.1108/978-1-78743-413-420181014.

Dam, N. A. K., Le Dinh, T., & Menvielle, W. (2019). A systematic literature review of big data adoption in internationalization. Journal of Marketing Analytics, 7(3), 182–195. doi:10.1057/s41270-019-00054-7.

Balios, D., Thomadakis, S., & Tsipouri, L. (2016). Credit rating model development: An ordered analysis based on accounting data. Research in International Business and Finance, 38, 122–136. doi:10.1016/j.ribaf.2016.03.011.

Briggs, L. L. (2013). Closing the business analytics gap at UT Austin. Business Intelligence Journal, 18(4), 22-24.

Davis, J. S., & Williams, J. R. (2015). Data driven: What students need to succeed in a rapidly changing business world? PwC Insights White Paper, New York, United States.

Hartmann, P. M., Zaki, M., Feldmann, N., & Neely, A. (2016). Capturing value from big data – a taxonomy of data-driven business models used by start-up firms. International Journal of Operations and Production Management, 36(10), 1382–1406. doi:10.1108/IJOPM-02-2014-0098.

Li, Y. (2022). Analysis of Data Audit Mode in Big Data Environment. Forest Chemicals Review, 2155-2164.

Frizzo-Barker, J., Chow-White, P. A., Mozafari, M., & Ha, D. (2016). An empirical study of the rise of big data in business scholarship. International Journal of Information Management, 36(3), 403–413. doi:10.1016/j.ijinfomgt.2016.01.006.

Dagilienė, L., & Klovienė, L. (2019). Motivation to use big data and big data analytics in external auditing. Managerial Auditing Journal, 34(7), 750–782. doi:10.1108/MAJ-01-2018-1773.

Biglari, V., Pourabedin, Z. (2022). Application of Data Analysis and Big Data in Auditing. Community Empowerment, Sustainable Cities, and Transformative Economies. Springer, Singapore. doi:10.1007/978-981-16-5260-8_8.

Alles, M. G. (2015). Drivers of the Use and Facilitators and Obstacles of the Evolution of Big Data by the Audit Profession. Accounting Horizons, 29(2), 439–449. doi:10.2308/acch-51067.

Alles, M., & Gray, G. (2014). A framework for analyzing the potential role of big data in auditing: A synthesis of the literature. Working Paper, Rutgers University, Rutgers, United States.

Brown-Liburd, H., Issa, H., & Lombardi, D. (2015). Behavioral implications of big data’s impact on audit judgment and decision making and future research directions. Accounting Horizons, 29(2), 451–468. doi:10.2308/acch-51023.

Gray, G. L., & Debreceny, R. S. (2014). A taxonomy to guide research on the application of data mining to fraud detection in financial statement audits. International Journal of Accounting Information Systems, 15(4), 357–380. doi:10.1016/j.accinf.2014.05.006.

Wang, T., & Cuthbertson, R. (2015). Eight issues on audit data analytics we would like researched. Journal of Information Systems, 29(1), 155–162. doi:10.2308/isys-50955.

Fosso Wamba, P. S. (2017). Big data analytics and business process innovation. Business Process Management Journal, 23(3), 470–476. doi:10.1108/BPMJ-02-2017-0046.

Monino, J.-L. (2016). Data Value, Big Data Analytics, and Decision-Making. Journal of the Knowledge Economy, 12(1), 256–267. doi:10.1007/s13132-016-0396-2.

Mehta, N., & Pandit, A. (2018). Concurrence of big data analytics and healthcare: A systematic review. International Journal of Medical Informatics, 114, 57–65. doi:10.1016/j.ijmedinf.2018.03.013.

Morales-Serazzi, M., González-Benito, Ó., & Martos-Partal, M. (2021). Achieving useful data analytics for marketing: Discrepancies in information quality for producers and users of information. BRQ Business Research Quarterly, 2340944421996343. doi:10.1177/2340944421996343.

Barutçu, M. T. (2017). Big Data Analytics for Marketing Revolution. Journal of Media Critiques, 3(11), 163–171. doi:10.17349/jmc117314.

Huerta, E., & Jensen, S. (2017). An accounting information systems perspective on data analytics and big data. Journal of Information Systems, 31(3), 101–114. doi:10.2308/isys-51799.

Richardson, V. J., Teeter, R., & Terrell, K. (2021). Data analytics for accounting. McGraw-Hill Education, New York, United States.

Benzidia, S., Makaoui, N., & Bentahar, O. (2021). The impact of big data analytics and artificial intelligence on green supply chain process integration and hospital environmental performance. Technological Forecasting and Social Change, 165, 120557. doi:10.1016/j.techfore.2020.120557.

Ajana, B. (2015). Augmented borders: Big data and the ethics of immigration control. Journal of Information, Communication and Ethics in Society, 13(1), 58–78. doi:10.1108/JICES-01-2014-0005.

Marshall, A., Mueck, S., & Shockley, R. (2015). How leading organizations use big data and analytics to innovate. Strategy and Leadership, 43(5), 32–39. doi:10.1108/SL-06-2015-0054.

Verma, S., & Bhattacharyya, S. S. (2017). Perceived strategic value-based adoption of Big Data Analytics in emerging economy: A qualitative approach for Indian firms. Journal of Enterprise Information Management, 30(3), 354–382. doi:10.1108/JEIM-10-2015-0099.

Vera-Baquero, A., Palacios, R. C., Stantchev, V., & Molloy, O. (2015). Leveraging big-data for business process analytics. Learning Organization, 22(4), 215–228. doi:10.1108/TLO-05-2014-0023.

Enget, K., Saucedo, G. D., & Wright, N. S. (2017). Mystery, Inc.: A Big Data case. Journal of Accounting Education, 38, 9–22. doi:10.1016/j.jaccedu.2016.12.003.

Gartner. (2013). IT glossary: Big data. Retrieved. Gartner, United States. Available online: (accessed on January 2023).

Kessel, P. V., Layman, J., Blackmore, J., Burnet, I., & Azuma, Y. (2014). Insights on governance, risk and compliance: big data, changing the way businesses compete and operate. Ernest and Young, London, United Kingdom.

Coyne, E. M., Coyne, J. G., & Walker, K. B. (2018). Big Data information governance by accountants. International Journal of Accounting and Information Management, 26(1), 153–170. doi:10.1108/IJAIM-01-2017-0006.

Aljarallah, K., & AlShathry, O. (2015). The Design of Cognitive-based Navigation Aids for better Online Interaction. Journal of Computer Engineering & Information Technology, 4(3), 1-13. doi:10.4172/2324-9307.1000135.

Cao, M., Chychyla, R., & Stewart, T. (2015). Big data analytics in financial statement audits. Accounting Horizons, 29(2), 423–429. doi:10.2308/acch-51068.

Al-Ateeq, B., Sawan, N., Al-Hajaya, K., Altarawneh, M., & Al-Makhadmeh, A. (2022). Big data analytics in auditing and the consequences for audit quality: A study using the technology acceptance model (TAM). Corporate Governance and Organizational Behavior Review, 6(1), 64–78. doi:10.22495/cgobrv6i1p5.

Yu, C.-S., Li, C.-K., & Chantatub, W. (2015). Analysis of consumer e-lifestyles and their effects on consumer resistance to using mobile banking: Empirical surveys in Thailand and Taiwan. International Journal of Business and Information, 10(2), 198–233.

Bose, S., Dey, S. K., & Bhattacharjee, S. (2022). Big data, data analytics and artificial intelligence in accounting: An overview. Handbook of Big Data Methods, SSRN, 1-34. Available online: (accessed on May 2022).

Byrnes, P., Criste, T., Stewart, T. & Vasarhelyi, M. (2014). Reimagining Auditing in a Wired World. Available online: (accessed on August 2022).

Alles, M., & Gray, G. L. (2016). Incorporating big data in audits: Identifying inhibitors and a research agenda to address those inhibitors. International Journal of Accounting Information Systems, 22, 44–59. doi:10.1016/j.accinf.2016.07.004.

Earley, C. E. (2015). Data analytics in auditing: Opportunities and challenges. Business Horizons, 58(5), 493–500. doi:10.1016/j.bushor.2015.05.002.

Dubey, R., Gunasekaran, A., Childe, S. J., Luo, Z., Wamba, S. F., Roubaud, D., & Foropon, C. (2018). Examining the role of big data and predictive analytics on collaborative performance in context to sustainable consumption and production behaviour. Journal of Cleaner Production, 196, 1508–1521. doi:10.1016/j.jclepro.2018.06.097.

Vasarhelyi, M. A., Kogan, A., & Tuttle, B. M. (2015). Big data in accounting: An overview. Accounting Horizons, 29(2), 381–396. doi:10.2308/acch-51071.

KPMG. (2017). Audit 2025, the future is now. Forbes Insights. Available online: kpmg/us/pdf/2017/03/us-audit-2025-final-report.pdf. (accessed on January 2023).

Gepp, A., Linnenluecke, M. K., O’Neill, T. J., & Smith, T. (2018). Big data techniques in auditing research and practice: Current trends and future opportunities. Journal of Accounting Literature, 40, 102–115. doi:10.1016/j.acclit.2017.05.003.

Dubey, R., & Gunasekaran, A. (2015). Education and training for successful career in big data and business analytics. Industrial and Commercial Training, 47(4), 174–181. doi:10.1108/ICT-08-2014-0059.

Appelbaum, D. A., Kogan, A., & Vasarhelyi, M. A. (2018). Analytical procedures in external auditing: A comprehensive literature survey and framework for external audit analytics. Journal of Accounting Literature, 40, 83–101. doi:10.1016/j.acclit.2018.01.001.

Patel, S., & Shah, M. (2022). A Comprehensive Study on Implementing Big Data in the Auditing Industry. Annals of Data Science, 17(1), 64–78. doi:10.1007/s40745-022-00430-8.

Toon, M., Collins, J., Short, E., Fisher, B., Zarrella, E., Paranjpe, M., & Coops, A. (2014). Going beyond the data: achieving actionable insights with data and analytics. KPMG International Cooperative, Amstelveen, Netherlands.

Katz, D. M. (2014). Regulators fear big data threatens audit quality. CFO. Available online: (accessed on January 2023).

Schoenfeld, J. (2020). Auditing in the Era of Big Data. SSRN Electronic Journal, 11(126), 2. doi:10.2139/ssrn.3596065.

Liddy, J. P. (2014). The future of audit. Forbes. Available online: (accessed on January 2023).

Lombardi, D. R., Bloch, R., & Vasarhelyi, M. A. (2014). The Future of Audit. Journal of Information Systems and Technology Management, 11(1), 21–32. doi:10.4301/s1807-17752014000100002.

Laney, D. (2001). 3D data management: Controlling data volume, velocity and variety. META group research note, 6(70), 1.

Sheng, J., Amankwah-Amoah, J., & Wang, X. (2017). A multidisciplinary perspective of big data in management research. International Journal of Production Economics, 191, 97–112. doi:10.1016/j.ijpe.2017.06.006.

Connelly, R., Playford, C. J., Gayle, V., & Dibben, C. (2016). The role of administrative data in the big data revolution in social science research. Social Science Research, 59, 1–12. doi:10.1016/j.ssresearch.2016.04.015.

Warren, J. D., Moffitt, K. C., & Byrnes, P. (2015). How big data will change accounting. Accounting Horizons, 29(2), 397–407. doi:10.2308/acch-51069.

Al-Htaybat, K., & von Alberti-Alhtaybat, L. (2017). Big Data and corporate reporting: impacts and paradoxes. Accounting, Auditing and Accountability Journal, 30(4), 850–873. doi:10.1108/AAAJ-07-2015-2139.

Bhimani, A., & Willcocks, L. (2014). Digitisation, Big Data and the transformation of accounting information. Accounting and Business Research, 44(4), 469–490. doi:10.1080/00014788.2014.910051.

Davenport, T. H. (2014). How strategists use “big data” to support internal business decisions, discovery and production. Strategy and Leadership, 42(4), 45–50. doi:10.1108/SL-05-2014-0034.

Arnaboldi, M., Busco, C., & Cuganesan, S. (2017). Accounting, accountability, social media and big data: revolution or hype? Accounting, Auditing and Accountability Journal, 30(4), 762–776. doi:10.1108/AAAJ-03-2017-2880.

Cooper, H., Hedges, L. V., & Valentine, J. C. (Eds.). (2019). The handbook of research synthesis and meta-analysis. Russell Sage Foundation, New York, United States. doi:10.7758/9781610448864.

Dixon-Woods, M., Agarwal, S., Jones, D., Young, B., & Sutton, A. (2005). Synthesising qualitative and quantitative evidence: A review of possible methods. Journal of Health Services Research and Policy, 10(1), 45–53. doi:10.1258/1355819052801804.

McKinney, E., Yoos, C. J., & Snead, K. (2017). The need for ‘skeptical’ accountants in the era of Big Data. Journal of Accounting Education, 38, 63–80. doi:10.1016/j.jaccedu.2016.12.007.

Janvrin, D. J., & Weidenmier Watson, M. (2017). “Big Data”: A new twist to accounting. Journal of Accounting Education, 38, 3–8. doi:10.1016/j.jaccedu.2016.12.009.

Sledgianowski, D., Gomaa, M., & Tan, C. (2017). Toward integration of Big Data, technology and information systems competencies into the accounting curriculum. Journal of Accounting Education, 38, 81–93. doi:10.1016/j.jaccedu.2016.12.008.

Fay, R., & Negangard, E. M. (2017). Manual journal entry testing: Data analytics and the risk of fraud. Journal of Accounting Education, 38, 37–49. doi:10.1016/j.jaccedu.2016.12.004.

Zhang, J., Yang, X., & Appelbaum, D. (2015). Toward effective big data analysis in continuous auditing. Accounting Horizons, 29(2), 469–476. doi:10.2308/acch-51070.

Brown-Liburd, H., & Vasarhelyi, M. A. (2015). Big data and audit evidence. Journal of Emerging Technologies in Accounting, 12(1), 1–16. doi:10.2308/jeta-10468.

Appelbaum, D., Kogan, A., & Vasarhelyi, M. A. (2017). Big data and analytics in the modern audit engagement: Research needs. Auditing, 36(4), 1–27. doi:10.2308/ajpt-51684.

Appelbaum, D. (2016). Securing big data provenance for auditors: The big data provenance black box as reliable evidence. Journal of Emerging Technologies in Accounting, 13(1), 17–36. doi:10.2308/jeta-51473.

Krahel, J. P., & Titera, W. R. (2015). Consequences of big data and formalization on accounting and auditing standards. Accounting Horizons, 29(2), 409–422. doi:10.2308/acch-51065.

Rikhardsson, P., & Dull, R. (2016). An exploratory study of the adoption, application and impacts of continuous auditing technologies in small businesses. International Journal of Accounting Information Systems, 20, 26–37. doi:10.1016/j.accinf.2016.01.003.

Appelbaum, D., Kozlowski, S., Vasarhelyi, M. A., & White, J. (2016). Designing CA/CM to fit not-for-profit organizations. Managerial Auditing Journal, 31(1), 87–110. doi:10.1108/maj-10-2014-1118.

Sun, T., Alles, M., & Vasarhelyi, M. A. (2015). Adopting continuous auditing: A cross-sectional comparison between China and the United States. Managerial Auditing Journal, 30(2), 176–204. doi:10.1108/MAJ-08-2014-1080.

Munoko, I., Brown-Liburd, H. L., & Vasarhelyi, M. (2020). The Ethical Implications of Using Artificial Intelligence in Auditing. Journal of Business Ethics, 167(2), 209–234. doi:10.1007/s10551-019-04407-1.

Liddy, J. P. (2015). How Data and Analytics Are Enhancing Audit Quality and Value. The CPA Journal, 85(5), 80.

Capriotti, R. J. (2014). Big Data bringing big changes to accounting. Pennsylvania CPA Journal, 85(2), 36-38.

de Camargo Fiorini, P., Roman Pais Seles, B. M., Chiappetta Jabbour, C. J., Barberio Mariano, E., & de Sousa Jabbour, A. B. L. (2018). Management theory and big data literature: From a review to a research agenda. International Journal of Information Management, 43, 112–129. doi:10.1016/j.ijinfomgt.2018.07.005.

Griffin, P. A., & Wright, A. M. (2015). Commentaries on big data’s importance for accounting and auditing. Accounting Horizons, 29(2), 377–379. doi:10.2308/acch-51066.

Dzuranin, A. C., Jones, J. R., & Olvera, R. M. (2018). Infusing data analytics into the accounting curriculum: A framework and insights from faculty. Journal of Accounting Education, 43, 24–39. doi:10.1016/j.jaccedu.2018.03.004.

Wahdain, E. A., Baharudin, A. S., & Ahmad, M. N. (2019). Big data analytics in the malaysian public sector: The determinants of value creation. Advances in Intelligent Systems and Computing, 843, 139–150. doi:10.1007/978-3-319-99007-1_14.

Manson, S., Mccartney, S., & sherer, M. (2012). Audit Automation: Improving Quality or Keeping up Appearances? Current Issues in Auditing, 254–272, Sage Publications, Newbury Park, United States. doi:10.4135/9781446219133.n14.

Oussous, A., Benjelloun, F.-Z., Ait Lahcen, A., & Belfkih, S. (2018). Big Data technologies: A survey. Journal of King Saud University - Computer and Information Sciences, 30(4), 431–448. doi:10.1016/j.jksuci.2017.06.001.

Chartered Institute of Management Accountants. (2022). What Big Data and AI mean for the Finance Professional. Chartered Institute of Management Accountants (CIMA), London, United Kingdom. Available online: A-Store/Finance-Futurist-Blogs/Blog-What-Big-Data-and-AI-mean-for-the-Finance-Professional/ (accessed on May 2022).

Mikalef, P., Pappas, I. O., Krogstie, J., & Giannakos, M. (2017). Big data analytics capabilities: a systematic literature review and research agenda. Information Systems and E-Business Management, 16(3), 547–578. doi:10.1007/s10257-017-0362-y.

Alles, M., & Gray, G. L. (2015). The pros and cons of using big data in auditing: a synthesis of the literature and a research agenda. J.E. Boritz Consultants Limited, Toronto, Ontario, Canada.

Salijeni, G., Samsonova-Taddei, A., & Turley, S. (2019). Big Data and changes in audit technology: contemplating a research agenda. Accounting and Business Research, 49(1), 95–119. doi:10.1080/00014788.2018.1459458.

Kend, M., & Nguyen, L. A. (2020). Big Data Analytics and Other Emerging Technologies: The Impact on the Australian Audit and Assurance Profession. Australian Accounting Review, 30(4), 269–282. doi:10.1111/auar.12305.

Tepalagul, N., & Lin, L. (2015). Auditor Independence and Audit Quality: A Literature Review. Journal of Accounting, Auditing and Finance, 30(1), 101–121. doi:10.1177/0148558X14544505.

Lee, H., Zhang, L., Liu, Q., & Vasarhelyi, M. (2022). Text Visual Analysis in Auditing: Data Analytics for Journal Entries Testing. International Journal of Accounting Information Systems, 46, 1-12. doi:10.1016/j.accinf.2022.100571.

Salijeni, G. (2019). Big data analytics and the social relevance of auditing: an exploratory study. Ph.D. Thesis, the University of Manchester, Manchester, United Kingdom.

Adrian, A. (2013). Big Data Challenges. Database Systems Journal, 4(3), 31-40.

Ruhnke, K., & Schmidt, M. (2014). The audit expectation gap: Existence, causes, and the impact of changes. Accounting and Business Research, 44(5), 572–601. doi:10.1080/00014788.2014.929519.

Vuori, V., & Väisänen, J. (2009). The use of social media in gathering and sharing competitive intelligence. The 9th International Conference on Electronic Business, 30 November-4 December, 2009, Macau, China.

Petticrew, M., & Roberts, H. (2008). Systematic Reviews in the Social Sciences: A Practical Guide. John Wiley & Sons, Hoboken, United States. doi:10.1002/9780470754887.

Cook, D. J., Mulrow, C. D., & Haynes, R. B. (1997). Systematic reviews: Synthesis of best evidence for clinical decisions. Annals of Internal Medicine, 126(5), 376–380. doi:10.7326/0003-4819-126-5-199703010-00006.

Moher, D., Liberati, A., Tetzlaff, J., & Altman, D. G. (2009). Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Journal of Clinical Epidemiology, 62(10), 1006–1012. doi:10.1016/j.jclinepi.2009.06.005.

Agustí, M. A., & Orta-Pérez, M. (2022). Big data and artificial intelligence in the fields of accounting and auditing: a bibliometric analysis. Revista Espanola de Financiacion y Contabilidad, 1-27. doi:10.1080/02102412.2022.2099675.

Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., ... & Moher, D. (2021). The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. International journal of surgery, 88, 105906. doi:10.1016/j.ijsu.2021.105906.

Lockwood, C., Munn, Z., & Porritt, K. (2015). Qualitative research synthesis: Methodological guidance for systematic reviewers utilizing meta-aggregation. International Journal of Evidence-Based Healthcare, 13(3), 179–187. doi:10.1097/XEB.0000000000000062.

Full Text: PDF

DOI: 10.28991/ESJ-2023-07-02-023


  • There are currently no refbacks.

Copyright (c) 2023 Yaseen Hezam