User-Centric Measures of the Perceived Light Qualities of Lighting Products

Carolina Hiller, Magdalena Boork, Johanna Enger, Karin Wendin


Nowadays, lighting planning is predominantly determined by the need to meet physically measurable requirements that are often based on current lighting standards. However, meeting the minimum technical requirements of the standards is no guarantee for a visually appealing light environment. Instead, requirements based on perceived light qualities also need to be included to achieve better user comfort. Taking perception-based qualities into consideration when creating a light environment is, for many, not an easy task. In addition, a common terminology for perceived light qualities is currently lacking, both in industry and in research. The aim of this paper is, therefore, to explore how perceived light qualities of white light sources can be described when employing user-centric measures. The focus was on the qualities of light colour and diffuse and distinct light since these qualities have a great impact on the visual impression of light. The perception was assessed by applying analytical sensory analysis to lighting products, a method found to be promising in previous work. The methodology is based on analytical measurement by the human senses, which is particularly valuable when developing a general terminology. Since sensory analysis is still quite new to the topic of lighting, the applicability of using the methodology to assess lighting in a real context was also investigated. The results of the studies showed that the perception of light qualities can be described using further concepts in addition to those currently used. For light colour, the concepts of reddish, bluish, yellowish, and greenish light colours proved suitable for providing a richer description of the quality. The concepts of diffuse and distinct light satisfactorily captured variations in light contrast produced by shadows, reflections, and sparkles. In addition, the studies revealed that analytical sensory analysis was applicable for assessing the perception of lighting in a real-world context. The latter means that knowledge gained in the laboratory can be translated into real environments. The user-centric measures investigated in this paper have contributed to the terminology related to perceived light qualities. These can complement the physical measures in lighting planning to promote light environments that are not only energy efficient and meet technical requirements, but also cater for increased user comfort.


Doi: 10.28991/ESJ-2023-07-02-022

Full Text: PDF


Visual Perception; Lighting Assessment; Sensory Analysis; Light Qualities; Light Colour; Diffuse Light; Distinct Light; Analytical Assessment.


González-Lezcano, R. A., (2021). Health and Well-Being Considerations in the Design of Indoor Environments. IGI Global, Hershey, United States. doi:10.4018/978-1-7998-7279-5.

Dutson C. (2010). Light volumes, Dark matters. Helen Hamlyn Centre, Royal College of Art, London, United Kingdom. Available online: (accessed on January 2023).

Veitch, J. A., Newsham, G. R., Boyce, P. R., & Jones, C. C. (2008). Lighting appraisal, well-being and performance in open-plan offices: A linked mechanisms approach. Lighting Research and Technology, 40(2), 133–148. doi:10.1177/1477153507086279.

Kelly, K., & Durante, A. (2017). An Examination of a New Interior Lighting Design Methodology Using Mean Room Surface Exitance. SDAR* Journal of Sustainable Design & Applied Research, 5(1), 1–8.

Flynn, J. E., Spencer, T. J., Martyniuk, O., & Hendrick, C. (1973). Interim study of procedures for investigating the effect of light on impression and behavior. Journal of the Illuminating Engineering Society, 3(1), 87–94. doi:10.1080/00994480.1973.10732231.

Boyce, P. R., & Wilkins, A. (2018). Visual discomfort indoors. Lighting Research and Technology, 50(1), 98–114. doi:10.1177/1477153517736467.

Murdoch, M. J. (2019). Dynamic color control in multiprimary tunable LED lighting systems. Journal of the Society for Information Display, 27(9), 570–580. doi:10.1002/jsid.779.

European Parliament. (2009). Directive 2009/125/EC of the European Parliament and of the Council of 21 October 2009 establishing a framework for the setting of ecodesign requirements for energy-related products (recast). Official Journal of the European Union, L 285, 10–35. Available online: (accessed on January 2023).

Davis, W., & Ohno, Y. (2009). Approaches to color rendering measurement. Journal of Modern Optics, 56(13), 1412–1419. doi:10.1080/09500340903023733.

Freyssinier, J. P., & Rea, M. S. (2013). Class a color designation for light sources used in general illumination. Journal of Light and Visual Environment, 37(2–3), 46–50. doi:10.2150/jlve.ieij130000501.

Smet, K. A. G., Whitehead, L., Schanda, J., & Luo, R. M. (2016). Toward a Replacement of the CIE Color Rendering Index for White Light Sources. LEUKOS - Journal of Illuminating Engineering Society of North America, 12(1–2), 61–69. doi:10.1080/15502724.2014.994747.

Boyce, P. R., & Stampfli, J. R. (2019). LRT Digest 3: New colour metrics and their use. Lighting Research and Technology, 51(5), 657–681. doi:10.1177/1477153519850006.

Albinsson, B., Wendin, K., & Åström, A. (2017). Handbook on sensory analysis. Kristianstad University, Kristianstad, Sweden.

Nordén, J., Boork, M., & Wendin, K. (2015). Development of methods for objective assessment of lighting: a pilot study. SP Technical Research Institute of Sweden, Borås, Sweden. Available online: 962898/FULLTEXT01.pdf (accessed on January 2023).

Boork, M., Nordén, J., Nilsson Tengelin, M., & Wendin, K. (2022). Sensory Evaluation of Lighting: A Methodological Pilot. LEUKOS - Journal of Illuminating Engineering Society of North America, 18(1), 66–82. doi:10.1080/15502724.2020.1813037.

EN 12464-1. (2021). Light and lighting – Lighting of work places – Part 1: Indoor work places. European Committee for Standardization (CEN), Brussels, Belgium.

Wilhelm, B., Weckerle, P., Durst, W., Fahr, C., & Röck, R. (2011). Increased illuminance at the workplace: Does it have advantages for daytime shifts? Lighting Research and Technology, 43(2), 185–199. doi:10.1177/1477153510380879.

Cuttle, C. (2013). A new direction for general lighting practice. Lighting Research and Technology, 45(1), 22–39. doi:10.1177/1477153512469201.

Fridell Anter, K. (2011). OPTIMA. Method study about colour, light and spatial experience. SYN-TES Report 1E, Konstfack-University College of Arts, Crafts and Design, Stockholm. Sweden. Available online: 20012/Optima%20Layout_Engelska.pdf (accessed on January 2023).

Küller, R., Ballal, S., Laike, T., Mikellides, B., & Tonello, G. (2006). The impact of light and colour on psychological mood: A cross-cultural study of indoor work environments. Ergonomics, 49(14), 1496–1507. doi:10.1080/00140130600858142.

Fridell Anter, K. (2012). About lighting design. An investigation into the work and knowledge needs of architects and other consultants. Stiftelsen Arkus, Stockholm, Sweden. (In Swedish).

Petersdottir, L. (2002). Nya utgångspunkter för belysningsplanering. Modeller för beställning av belysning. Ph.D. Thesis, KTH Royal Institute of Technology, Stockholm, Sweden. (In Swedish).

Pertola, P. (2012). Lighting issues in the construction process: Causes of deficiencies and suggestions for an improved process. Ph.D. Thesis, KTH Royal Institute of Technology, Stockholm, Sweden. (In Swedish)

IWBI (2023). International WELL Building Institute. WELL v2. Available online: (accessed on January 2023).

Ljuskultur (2022). Light & Space: The planning guide for indoor lighting. Ljuskultur, Stockholm, Sweden. Available online: eknik-bransch/ladda-ner-material/ (accessed on January 2023). (In Swedish).

Illuminating Engineering Society (2023). IES Lighting Ready Reference App. Illuminating Engineering Society, New York, United States. Available online: (accessed on January 2023).

Durmus, D. (2022). Correlated color temperature: Use and limitations. Lighting Research and Technology, 54(4), 363–375. doi:10.1177/14771535211034330.

David, A., Sahlhoff, D., & Wisser, M. (2019). Human perception of light chromaticity: short-wavelength effects in spectra with low circadian stimulation, and broader implications for general LED sources. Optics Express, 27(22), 31553. doi:10.1364/oe.27.031553.

Luo, M. R., & Ma, S. (2019). A Neutral White Locus. LEUKOS - Journal of Illuminating Engineering Society of North America, 15(1), 65–75. doi:10.1080/15502724.2018.1499034.

Ohno, Y. (2014). Practical use and calculation of CCT and Duv. LEUKOS - Journal of Illuminating Engineering Society of North America, 10(1), 47–55. doi:10.1080/15502724.2014.839020.

Rea, M. S., & Freyssinier, J. P. (2013). White lighting. Color Research and Application, 38(2), 82–92. doi:10.1002/col.20738.

Feng, X., Xu, W., Han, Q., & Zhang, S. (2016). LED light with enhanced color saturation and improved white light perception. Optics Express, 24(1), 573. doi:10.1364/oe.24.000573.

Valberg, A. (2005). Light vision color. John Wiley & Sons, New York, United States.

Chaparro, A., Stromeyer, C. F., Huang, E. P., Kronauer, R. E., & Eskew, R. T. (1993). Colour is what the eye sees best. Nature, 361(6410), 348–350. doi:10.1038/361348a0.

Hård, A., Küller, R., Sivik, L., & Svedmyr, Å. (1998). Experience of color and colored environment - Color anthology book 2. Byggforskningsrådet, Stockholm, Sweden. (In Swedish).

Köster, E. P. (2003). The psychology of food choice: Some often encountered fallacies. Food Quality and Preference, 14(5–6), 359–373. doi:10.1016/S0950-3293(03)00017-X.

Royer, M. P. (2022). Tutorial: Background and Guidance for Using the ANSI/IES TM-30 Method for Evaluating Light Source Color Rendition. LEUKOS - Journal of Illuminating Engineering Society of North America, 18(2), 191–231. doi:10.1080/15502724.2020.1860771.

Lee, S., & Yoon, H. C. (2021). A randomized controlled trail for comparing led color temperature and color rendering attributes in different illuminance environments for human-centric office lighting. Applied Sciences (Switzerland), 11(18), 8313. doi:10.3390/app11188313.

Wei, M., & Houser, K. W. (2016). What Is the Cause of Apparent Preference for Sources with Chromaticity below the Blackbody Locus? Leukos - Journal of Illuminating Engineering Society of North America, 12(1–2), 95–99. doi:10.1080/15502724.2015.1029131.

Royer, M. P., Wilkerson, A., & Wei, M. (2018). Human perceptions of colour rendition at different chromaticities. Lighting Research and Technology, 50(7), 965–994. doi:10.1177/1477153517725974.

Rea, M. S., & Freyssinier, J. P. (2013). White lighting for residential applications. Lighting Research and Technology, 45(3), 331–344. doi:10.1177/1477153512442936.

Kelly, R. (1952). Lighting as an Integral Part of Architecture. College Art Journal, 12(1), 1-24. doi:10.2307/773361.

Johansson, M., Pedersen, E., Maleetipwan-Mattsson, P., Kuhn, L., & Laike, T. (2014). Perceived outdoor lighting quality (POLQ): A lighting assessment tool. Journal of Environmental Psychology, 39, 14–21. doi:10.1016/j.jenvp.2013.12.002.

Knez, I. (1995). Effects of indoor lighting on mood and cognition. Journal of Environmental Psychology, 15(1), 39–51. doi:10.1016/0272-4944(95)90013-6.

Knez, I., & Enmarker, I. (1998). Effects of office lighting on mood and cognitive performance and a gender effect in work-related judgment. Environment and Behavior, 30(4), 553–567. doi:10.1177/001391659803000408.

Veitch, J. A., & Newsham, G. R. (2000). Exercised control, lighting choices, and energy use: An office simulation experiment. Journal of Environmental Psychology, 20(3), 219–237. doi:10.1006/jevp.1999.0169.

Veitch, J. A., Stokkermans, M. G. M., & Newsham, G. R. (2013). Linking Lighting Appraisals to Work Behaviors. Environment and Behavior, 45(2), 198–214. doi:10.1177/0013916511420560.

Pellegrino, A. (1999). Assessment of artificial fighting parameters in a visual comfort perspective. Lighting Research & Technology, 31(3), 107–115. doi:10.1177/096032719903100305.

Royer, M., Houser, K., Durmus, D., Esposito, T., & Wei, M. (2022). Recommended methods for conducting human factors experiments on the subjective evaluation of colour rendition. Lighting Research and Technology, 54(3), 199–236. doi:10.1177/14771535211019864.

Stone, H. (2012). Sensory Evaluation Practices. Academic Press, London, United Kingdom. doi:10.1016/C2009-0-63404-8.

Lawless, H. T., & Heymann, H. (2010). Sensory evaluation of food: principles and practices. Springer Science & Business Media, New York, United States. doi:10.1007/978-1-4419-6488-5.

Giboreau, A., Navarro, S., Faye, P., & Dumortier, J. (2001). Sensory evaluation of automotive fabrics: The contribution of categorization tasks and non-verbal information to set-up a descriptive method of tactile properties. Food Quality and Preference, 12(5–7), 311–322. doi:10.1016/S0950-3293(01)00016-7.

Knudsen, H. N., Clausen, P. A., Wilkins, C. K., & Wolkoff, P. (2007). Sensory and chemical evaluation of odorous emissions from building products with and without linseed oil. Building and Environment, 42(12), 4059–4067. doi:10.1016/j.buildenv.2006.05.009.

Kolarik, J., & Toftum, J. (2012). The impact of a photocatalytic paint on indoor air pollutants: Sensory assessments. Building and Environment, 57, 396–402. doi:10.1016/j.buildenv.2012.06.010.

Wilhite, H., Nakagami, H., Masuda, T., Yamaga, Y., & Haneda, H. (1996). A cross-cultural analysis of household energy use behaviour in Japan and Norway. Energy Policy, 24(9), 795–803. doi:10.1016/0301-4215(96)00061-4.

Park, N. K., Pae, J. Y., & Meneely, J. (2010). Cultural preferences in hotel guestroom lighting design. Journal of Interior Design, 36(1), 21–34. doi:10.1111/j.1939-1668.2010.01046.x.

Pierson, C., Wienold, J., & Bodart, M. (2018). Review of Factors Influencing Discomfort Glare Perception from Daylight. LEUKOS, 14(3), 111–148. doi:10.1080/15502724.2018.1428617.

ISO 8589:2010. (2010). Sensory analysis – General guidance for the design of test rooms. International Organization for Standardization (ISO), Geneva, Switzerland.

ISO 4121:2003. (2003). Sensory analysis — Guidelines for the use of quantitative response scales. International Organization for Standardization (ISO), Geneva, Switzerland.

Kay, P., Berlin, B., Maffi, L., & Merrifield, W. (1997). Color naming across languages. Color categories in thought and language, 21(2).

Davis, W., Weintraub, S., & Anson, G. (2011). Perceptions of correlated colour temperature: the colour of white. Proceedings of the 27th Session of the CIE, 10-15 July-2011, Sun City, South Africa.

Rea, M. S., & Freyssinier, J. P. (2014). White lighting: A provisional model for predicting perceived tint in “white” illumination. Color Research and Application, 39(5), 466–479. doi:10.1002/col.21837.

Smet, K. A. G., Deconinck, G., & Hanselaer, P. (2015). Chromaticity of unique white in illumination mode. Optics Express, 23(10), 12488. doi:10.1364/oe.23.012488.

Huang, Z., Liu, Q., Pointer, M. R., Luo, M. R., Wu, B., & Liu, A. (2020). White lighting and colour preference, Part 1: Correlation analysis and metrics validation. Lighting Research and Technology, 52(1), 5–22. doi:10.1177/1477153518824789.

Ohno, Y., & Fein, M. (2014). Vision experiment on acceptable and preferred white light chromaticity for lighting. Proceedings of CIE 2014 Lighting Quality and Energy Efficiency, 23-26 April, 2014, Kuala Lumpur, Malaysia.

Rockcastle, S., & Andersen, M. (2014). Measuring the dynamics of contrast & daylight variability in architecture: A proof-of-concept methodology. Building and Environment, 81, 320–333. doi:10.1016/j.buildenv.2014.06.012.

Van Den Wymelenberg, K., Inanici, M., & Johnson, P. (2010). The Effect of Luminance Distribution Patterns on Occupant Preference in a Daylit Office Environment. Leukos, 7(2), 103–122. doi:10.1582/leukos.2010.07.02003.

Arnkil, H., Fridell Anter, K., & Klarén, U. (2012). Colour and light: Concepts and confusions. Aalto University, Helsinki, Finland.

Tang, H., Que, Y., Zhang, Z., & Li, Q. (2019). The Inspiration of Light and Shadow on Design. E3S Web of Conferences, 79, 01019. doi:10.1051/e3sconf/20197901019.

Mende, K. (2019). Designing with Shadow/in Architectural Lighting Design. ICGG 2018-Proceedings of the 18th International Conference on Geometry and Graphics. ICGG 2018, Advances in Intelligent Systems and Computing, 809. Springer, Cham, Switzerland. doi:10.1007/978-3-319-95588-9_6.

Kingdom, F. A. A. (2011). Lightness, brightness and transparency: A quarter century of new ideas, captivating demonstrations and unrelenting controversy. Vision Research, 51(7), 652–673. doi:10.1016/j.visres.2010.09.012.

Ferrero, A., Perales, E., Basic, N., Pastuschek, M., Porrovecchio, G., Schirmacher, A., Velázquez, J. L., Campos, J., Martínez-Verdú, F. M., Šmid, M., Linduska, P., Dauser, T., & Blattner, P. (2021). Preliminary measurement scales for sparkle and graininess. Optics Express, 29(5), 7589. doi:10.1364/oe.411953.

Sekulovski, D., Perz, M., & Vissenberg, G. (2019). Exploring the Pleasant Side of Glare in the Led Era. Proceedings of the 29th Quadrennial Session of the CIE. doi:10.25039/x46.2019.op39.

Akashi, Y., Myer, M. A., Boyce, P. R., Loe, D. L., & Osterhaus, W. K. E. (2006). Identifying sparkle. Lighting Research and Technology, 38(4), 325–340. doi:10.1177/1477153506070684.

Vinnova and Test Site Sweden (TSS). (2017). Testbed Development Guide. Vinnova and Test Site Sweden (TSS), Gothenburg, Sweden. Available online (accessed on January 2023). (In Swedish).

Dangol, R., Islam, M. S., Hyvärinen, M., Bhushal, P., Puolakka, M., & Halonen, L. (2015). User acceptance studies for LED office lighting: Preference, naturalness and colourfulness. Lighting Research and Technology, 47(1), 36–53. doi:10.1177/1477153513514424.

Nakamura, Y., & Obinata, H. (2018). Brightness Prediction Method Based on Brightness Matching Experiment in Real Lighted Interiors. Proceedings of the Conference at the Cie Midterm Meeting 2017 23 – 25 October 2017, Jeju, Republic Of Korea. doi:10.25039/x44.2017.op50.

Sullivan, J., & Donn, M. (2018). Measuring the Effect of Light Distribution on Spatial Brightness. Proceedings of the Conference at the Cie Midterm Meeting 2017 23 – 25 October 2017, Jeju, Republic Of Korea. doi:10.25039/x44.2017.op49.

Tiller, D. K., & Veitch, J. A. (1995). Perceived room brightness: Pilot study on the effect of luminance distribution. Lighting Research & Technology, 27(2), 93–101. doi:10.1177/14771535950270020401.

Galasiu, A. D., & Veitch, J. A. (2006). Occupant preferences and satisfaction with the luminous environment and control systems in daylit offices: a literature review. Energy and Buildings, 38(7), 728–742. doi:10.1016/j.enbuild.2006.03.001.

Murdoch, M. J., & Fairchild, M. D. (2019). Modelling the effects of inter-observer variation on colour rendition. Lighting Research and Technology, 51(1), 37–54. doi:10.1177/1477153517744387.

Enger, J., Fridell Anter, K., & Laike, T. (2018). A Typology for Light Quality in Spatial Contexts. Proceedings of the Conference at the Cie Midterm Meeting 2017 23 – 25 October 2017, Jeju, Republic Of Korea. doi:10.25039/x44.2017.op36.

Enger, J., Laike, T., & Fridell Anter, K. (2018). Experience of Light in Comparison With Retinal Response to Radiation. Proceedings of CIE 2018 Topical Conference on Smart Lighting. doi:10.25039/x45.2018.op30.

Full Text: PDF

DOI: 10.28991/ESJ-2023-07-02-022


  • There are currently no refbacks.

Copyright (c) 2023 Carolina Hiller, Magdalena Boork, Johanna Enger, Karin Wendin