Development of Algorithm for Calculating Data Packet Transmission Delay in Software-Defined Networks

Islam Alexandrov, Aslan Tatarkanov, Vladimir Kuklin, Maxim Mikhailov


The relevance of this type of network is associated with the development and improvement of protocols, methods, and tools to verify routing policies and algorithmic models describing various aspects of SDN, which determined the purpose of this study. The main purpose of this work is to develop specialized methods to estimate the maximum end-to-end delay during packet transmission using SDN infrastructure. The methods of network calculus theory are used to build a model for estimating the maximum transmission delay of a data packet. The basis for this theory is obtaining deterministic evaluations by analyzing the best and worst-case scenarios for individual parts of the network and then optimally combining the best ones. It was found that the developed method of theoretical evaluation demonstrates high accuracy. Consequently, it is shown that the developed algorithm can estimate SND performance. It is possible to conclude the configuration optimality of elements in the network by comparing the different possible configurations. Furthermore, the proposed algorithm for calculating the upper estimate for packet transmission delay can reduce network maintenance costs by detecting inconsistencies between network equipment settings and requirements. The scientific novelty of these results is that it became possible to calculate the achievable upper data delay in polynomial time even in the case of arbitrary tree topologies, but not only when the network handlers are located in tandem.


Doi: 10.28991/ESJ-2022-06-05-010

Full Text: PDF


Software-Defined Networks; Data Transmission Delay; Routing; Network Topology; Network Model; Network Functions Virtualization.


Gunatilaka, D. (2013). Recent Information-Centric Networking Approaches. Recent Information-Centric Netw. Approaches, 1-16.

Fisher, W., Suchara, M., & Rexford, J. (2010). Greening backbone networks. Proceedings of the First ACM SIGCOMM Workshop on Green Networking - Green Networking’10. doi:10.1145/1851290.1851297.

Yu, K., Eum, S., Kurita, T., Hua, Q., Sato, T., Nakazato, H., Asami, T., & Kafle, V. P. (2019). Information-Centric Networking: Research and Standardization Status. IEEE Access, 7, 126164–126176. doi:10.1109/ACCESS.2019.2938586.

Kim, D., Kim, Y. H., Park, C., & Kim, K. Il. (2018). KREONET-S: Software-defined wide area network design and deployment on KREONET. IAENG International Journal of Computer Science, 45(1), 27–33.

Mijumbi, R., Serrat, J., Gorricho, J. L., Latre, S., Charalambides, M., & Lopez, D. (2016). Management and orchestration challenges in network functions virtualization. IEEE Communications Magazine, 54(1), 98–105. doi:10.1109/MCOM.2016.7378433.

McKeown, N., Anderson, T., Balakrishnan, H., Parulkar, G., Peterson, L., Rexford, J., ... & Turner, J. (2008). OpenFlow. ACM SIGCOMM computer communication review, 38(2), 69-74. doi:10.1145/1355734.1355746.

McGeer, R. (2012). A safe, efficient update protocol for openflow networks. Proceedings of the First Workshop on Hot Topics in Software Defined Networks - HotSDN ’12. doi:10.1145/2342441.2342454.

Azzouni, A., Trang, N. T. M., Boutaba, R., & Pujolle, G. (2017). Limitations of OpenFlow topology discovery protocol. 2017 16th Annual Mediterranean Ad Hoc Networking Workshop (Med-Hoc-Net). doi:10.1109/MedHocNet.2017.8001642.

Al-Shaer, E., & Al-Haj, S. (2010, October). FlowChecker: Configuration analysis and verification of federated OpenFlow infrastructures. Proceedings of the 3rd ACM workshop on Assurable and usable security configuration - SafeConfig '10. doi:10.1145/1866898.1866905.

Mai, H., Khurshid, A., Agarwal, R., Caesar, M., Godfrey, P. B., & King, S. T. (2011). Debugging the data plane with anteater. Computer Communication Review, 41(4), 290–301. doi:10.1145/2043164.2018470.

Khurshid, A., Zou, X., Zhou, W., Caesar, M., & Godfrey, P. B. (2013). VeriFlow: Verifying Network-Wide Invariants in Real Time. 10th USENIX Symposium on Networked Systems Design and Implementation (NSDI 13), 2-5 April, 2013, Lombard, United States.

Kazemian, P., Chang, M., Zeng, H., Varghese, G., McKeown, N., & Whyte, S. (2013). Real time network policy checking using header space analysis. 10th USENIX Symposium on Networked Systems Design and Implementation (NSDI 13), 2-5 April, 2013, Lombard, United States.

Yang, H., & Lam, S. S. (2016). Real-time verification of network properties using atomic predicates. IEEE/ACM Transactions on Networking, 24(2), 887–900. doi:10.1109/TNET.2015.2398197.

Henzinger, T. A., Nicollin, X., Sifakis, J., & Yovine, S. (1994). Symbolic model checking for real-time systems. Information and computation, 111(2), 193-244. doi:10.1006/inco.1994.1045

Bouillard, A., Boyer, M., & Le Corronc, E. (2018). Deterministic network calculus: From theory to practical implementation. John Wiley & Sons, Hoboken, United States. doi:10.1002/9781119440284.

Nayyer, A., Sharma, A. K., & Awasthi, L. K. (2021). Learning-based hybrid routing for scalability in software defined networks. Computer Networks, 198, 108362. doi:10.1016/j.comnet.2021.108362.

Iqbal, S., Maryam, H., Qureshi, K. N., Javed, I. T., & Crespi, N. (2022). Atomized flow rule formation by using machine learning in software defined networks based edge computing. Egyptian Informatics Journal, 23(1), 149–157. doi:10.1016/j.eij.2021.10.001.

Swaminathan, A., Chaba, M., Sharma, D. K., & Ghosh, U. (2021). GraphNET: Graph Neural Networks for routing optimization in Software Defined Networks. Computer Communications, 178, 169–182. doi:10.1016/j.comcom.2021.07.025.

Liu, T., Wang, H., & Zhang, Y. (2022). A traffic anomaly detection scheme for non-directional denial of service attacks in software-defined optical network. Computers and Security, 112, 102467. doi:10.1016/j.cose.2021.102467.

Scaranti, G. F., Carvalho, L. F., Barbon, S., Lloret, J., & Proença, M. L. (2022). Unsupervised online anomaly detection in Software Defined Network environments. Expert Systems with Applications, 191. doi:10.1016/j.eswa.2021.116225.

Hari Krishna, S. M., & Sharma, R. (2021). Survey on application programming interfaces in software defined networks and network function virtualization. Global Transitions Proceedings, 2(2), 199–204. doi:10.1016/j.gltp.2021.08.018.

Yang, X., Xu, H., Liu, J., Qian, C., Fan, X., Huang, H., & Wang, H. (2021). Achieving high reliability and throughput in software defined networks. Computer Networks, 197, 108271. doi:10.1016/j.comnet.2021.108271.

Cheng, Q., Wu, C., Zhou, H., Kong, D., Zhang, D., Xing, J., & Ruan, W. (2021). Machine learning based malicious payload identification in software-defined networking. Journal of Network and Computer Applications, 192, 103186. doi:10.1016/j.jnca.2021.103186.

Mohamed, A., Hamdan, M., Khan, S., Abdelaziz, A., Babiker, S. F., Imran, M., & Marsono, M. N. (2021). Software-defined networks for resource allocation in cloud computing: A survey. Computer Networks, 195, 108151. doi:10.1016/j.comnet.2021.108151.

Cui, Y., Qian, Q., Guo, C., Shen, G., Tian, Y., Xing, H., & Yan, L. (2021). Towards DDoS detection mechanisms in Software-Defined Networking. Journal of Network and Computer Applications, 190, 103156. doi:10.1016/j.jnca.2021.103156.

Nguyen, T. A., Kim, M., Lee, J., Min, D., Lee, J. W., & Kim, D. (2022). Performability evaluation of switch-over Moving Target Defence mechanisms in a Software Defined Networking using stochastic reward nets. Journal of Network and Computer Applications, 199. doi:10.1016/j.jnca.2021.103267.

Dou, S., Miao, G., Guo, Z., Yao, C., Wu, W., & Xia, Y. (2021). Matchmaker: Maintaining network programmability for Software-Defined WANs under multiple controller failures. Computer Networks, 192, 108045. doi:10.1016/j.comnet.2021.108045.

Hu, T., Ren, Q., Yi, P., Li, Z., Lan, J., Hu, Y., & Li, Q. (2021). An efficient approach to robust controller placement for link failures in Software-Defined Networks. Future Generation Computer Systems, 124, 187–205. doi:10.1016/j.future.2021.05.022.

Salman, M. I., & Wang, B. (2021). Boosting performance for software defined networks from traffic engineering perspective. Computer Communications, 167, 55–62. doi:10.1016/j.comcom.2020.12.018.

Le Boudec, J. Y., Thiran, P. (1999). Network Calculus Using Min-Plus System Theory. High-Performance Networks for Multimedia Applications. Springer, Boston, United States. doi:10.1007/978-1-4615-5541-4_9.

Le Boudec, J. Y., & Thiran, P. (2001). Network calculus: a theory of deterministic queuing systems for the internet. Springer, Berlin, Germany. doi:10.1007/3-540-45318-0_¬1.

Saino, L., Cocora, C., & Pavlou, G. (2013). A Toolchain for Simplifying Network Simulation Setup. Proceedings of the 6th International Conference on Simulation Tools and Techniques. doi:10.4108/simutools.2013.251735.

Sinha, D., Haribabu, K., & Balasubramaniam, S. (2016). Real-time monitoring of network latency in Software Defined Networks. 2015 IEEE International Conference on Advanced Networks and Telecommunications Systems (ANTS). doi:10.1109/ANTS.2015.7413664.

Tian, Y. Traffic and Performance Measurements in SDNs. Hong Kong University of Science and Technology. PhD Thesis, department of Electeronic and Computer Engineering, Hong Kong University of Science and technology, Clear water Bay, Hong Kong. doi:10.14711/thesis-991012730463103412.

Chefrour, D. (2022). One-Way Delay Measurement from Traditional Networks to SDN: A Survey. ACM Computing Surveys, 54(7), 1–35. doi:10.1145/3466167.

Full Text: PDF

DOI: 10.28991/ESJ-2022-06-05-010


  • There are currently no refbacks.

Copyright (c) 2022 Islam Alexandrov, Aslan Tatarkanov, Vladimir Kuklin, Maxim Mikhailov