Smart Farm-Care using a Deep Learning Model on Mobile Phones

Mercelin Francis, Kalaiarasi Sonai Muthu Anbananthen, Deisy Chelliah, Subarmaniam Kannan, Sridevi Subbiah, Jayakumar Krishnan


Deep learning and its models have provided exciting solutions in various image processing applications like image segmentation, classification, labeling, etc., which paved the way to apply these models in agriculture to identify diseases in agricultural plants. The most visible symptoms of the disease initially appear on the leaves. To identify diseases found in leaf images, an accurate classification system with less size and complexity is developed using smartphones. A labeled dataset consisting of 3171 apple leaf images belonging to 4 different classes of diseases, including the healthy ones, is used for classification. In this work, four variants of MobileNet models - pre-trained on the ImageNet database, are retrained to diagnose diseases. The model’s variants differ based on their depth and resolution multiplier. The results show that the proposed model with 0.5 depth and 224 resolution performs well - achieving an accuracy of 99.6%. Later, the K-means algorithm is used to extract additional features, which helps improve the accuracy to 99.7% and also measures the number of pixels forming diseased spots, which helps in severity prediction.


Doi: 10.28991/ESJ-2023-07-02-013

Full Text: PDF


Deep Learning; Convolution Neural Network; Feature Extraction; Segmentation; Classification.


Saravanan, R. (2012). ICTs for agricultural extension in India: policy implications for developing countries. Proceedings of 8th Asian Conference for Information Technology in Agriculture, AFITA, 3-6 September, Taipei, Taiwan.

Anbananthen, K. S. M., Subbiah, S., Chelliah, D., Sivakumar, P., Somasundaram, V., Velshankar, K. H., & Khan, M. K. A. A. (2021). An intelligent decision support system for crop yield prediction using hybrid machine learning algorithms. F1000Research, 10, 1143. doi:10.12688/f1000research.73009.1.

Goodridge, W., Bernard, M., Jordan, R., & Rampersad, R. (2017). Intelligent diagnosis of diseases in plants using a hybrid Multi-Criteria decision making technique. Computers and Electronics in Agriculture, 133, 80–87. doi:10.1016/j.compag.2016.12.003.

Kolhe, S., Kamal, R., Saini, H. S., & Gupta, G. K. (2012). Expert System for Disease Diagnosis in Soybean-ESDDS. Special issue – “AI in Agriculture”. Journal of the Indian Society of Agricultural Statistics, 67(1), 79-88.

Camargo, A., & Smith, J. S. (2009). An image-processing based algorithm to automatically identify plant disease visual symptoms. Biosystems Engineering, 102(1), 9–21. doi:10.1016/j.biosystemseng.2008.09.030.

Camargo, A., & Smith, J. S. (2009). Image pattern classification for the identification of disease causing agents in plants. Computers and Electronics in Agriculture, 66(2), 121–125. doi:10.1016/j.compag.2009.01.003.

Yao, Q., Guan, Z., Zhou, Y., Tang, J., Hu, Y., & Yang, B. (2009). Application of Support Vector Machine for Detecting Rice Diseases Using Shape and Color Texture Features. 2009 International Conference on Engineering Computation. doi:10.1109/icec.2009.73.

Singh, J., & Kaur, H. (2019). Plant Disease Detection Based on Region-Based Segmentation and KNN Classifier. Lecture Notes in Computational Vision and Biomechanics, 1667–1675. doi:10.1007/978-3-030-00665-5_154.

Phadikar, S., Sil, J., & Das, A. K. (2013). Rice diseases classification using feature selection and rule generation techniques. Computers and Electronics in Agriculture, 90, 76–85. doi:10.1016/j.compag.2012.11.001.

Munisami, T., Ramsurn, M., Kishnah, S., & Pudaruth, S. (2015). Plant Leaf Recognition Using Shape Features and Colour Histogram with K-nearest Neighbour Classifiers. Procedia Computer Science, 58, 740–747. doi:10.1016/j.procs.2015.08.095.

Chaudhary, A., Kolhe, S., & Kamal, R. (2016). An improved random forest classifier for multi-class classification. Information Processing in Agriculture, 3(4), 215–222. doi:10.1016/j.inpa.2016.08.002.

Ebrahimi, M. A., Khoshtaghaza, M. H., Minaei, S., & Jamshidi, B. (2017). Vision-based pest detection based on SVM classification method. Computers and Electronics in Agriculture, 137, 52–58. doi:10.1016/j.compag.2017.03.016.

Islam, M., Anh Dinh, Wahid, K., & Bhowmik, P. (2017). Detection of potato diseases using image segmentation and multiclass support vector machine. 2017 IEEE 30th Canadian Conference on Electrical and Computer Engineering (CCECE), Windsor, Canada. doi:10.1109/ccece.2017.7946594.

Farid, D. Md., Zhang, L., Rahman, C. M., Hossain, M. A., & Strachan, R. (2014). Hybrid decision tree and naïve Bayes classifiers for multi-class classification tasks. Expert Systems with Applications, 41(4), 1937–1946. doi:10.1016/j.eswa.2013.08.089.

McCallum, A., & Nigam, K. (1998). A comparison of event models for naive bayes text classification. AAAI-98 workshop on learning for text categorization, 752(1), 41-48, 26-31 July, 1998, Madison, United States.

Tan, J. W., Chang, S. W., Abdul-Kareem, S., Yap, H. J., & Yong, K. T. (2020). Deep Learning for Plant Species Classification Using Leaf Vein Morphometric. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 17(1), 82–90. doi:10.1109/TCBB.2018.2848653.

Zenkl, R., Timofte, R., Kirchgessner, N., Roth, L., Hund, A., Van Gool, L., Walter, A., & Aasen, H. (2022). Outdoor Plant Segmentation With Deep Learning for High-Throughput Field Phenotyping on a Diverse Wheat Dataset. Frontiers in Plant Science, 12(774068). doi:10.3389/fpls.2021.774068.

D.Pujari, J., Yakkundimath, R., & Byadgi, A. S. (2016). SVM and ANN Based Classification of Plant Diseases Using Feature Reduction Technique. International Journal of Interactive Multimedia and Artificial Intelligence, 3(7), 6. doi:10.9781/ijimai.2016.371.

Kamilaris, A., & Prenafeta-Boldú, F. X. (2018). Deep learning in agriculture: A survey. Computers and Electronics in Agriculture, 147, 70–90. doi:10.1016/j.compag.2018.02.016.

Teke, M., Deveci, H. S., Haliloglu, O., Gurbuz, S. Z., & Sakarya, U. (2013). A short survey of hyperspectral remote sensing applications in agriculture. 2013 6th International Conference on Recent Advances in Space Technologies (RAST), Istanbul, Turkey. doi:10.1109/rast.2013.6581194.

Saxena, L., & Armstrong, L. (2014). A survey of image processing techniques for agriculture. Proceedings of Asian Federation for Information Technology in Agriculture. 29 September- 2 October, 2014, Perth, Australia.

Chen, Y., Wang, S., & Ge, Y. (2022). A Survey on the Applications of Image Classification Based on Convolution Neural Network. 2022 IEEE Asia-Pacific Conference on Image Processing, Electronics and Computers (IPEC), Dalian, China. doi:10.1109/ipec54454.2022.9777354.

Mohanty, S. P., Hughes, D. P., & Salathé, M. (2016). Using Deep Learning for Image-Based Plant Disease Detection. Frontiers in Plant Science, 7. doi:10.3389/fpls.2016.01419.

Liu, W., Wang, Z., Liu, X., Zeng, N., Liu, Y., & Alsaadi, F. E. (2017). A survey of deep neural network architectures and their applications. Neurocomputing, 234, 11–26. doi:10.1016/j.neucom.2016.12.038.

Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556. doi:10.48550/arXiv.1409.1556.

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2017). ImageNet classification with deep convolutional neural networks. Communications of the ACM, 60(6), 84–90. doi:10.1145/3065386.

Szegedy, C., Wei Liu, Yangqing Jia, Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., & Rabinovich, A. (2015). Going deeper with convolutions. 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). doi:10.1109/cvpr.2015.7298594.

Food and Agriculture Organization of the United Nations (FAO). (2009). The state of food and agriculture. Food and Agriculture Organization of the United Nations (FAO), Rome, Italy.

Tyagi, A. C. (2016). Towards a Second Green Revolution. Irrigation and Drainage, 65(4), 388–389. doi:10.1002/ird.2076.

Altalak, M., Uddin, M. A., Alajmi, A., & Rizg, A. (2022). Smart Agriculture Applications Using Deep Learning Technologies: A Survey. Applied Sciences (Switzerland), 12(12), 5919. doi:10.3390/app12125919.

Deisy, C., & Francis, M. (2018). Image Segmentation for Feature Extraction. Advances in Multimedia and Interactive Technologies, 232–257, IGI Global, Hershey, United States. doi:10.4018/978-1-5225-5775-3.ch013.

Ahmad, A., Saraswat, D., & El Gamal, A. (2023). A survey on using deep learning techniques for plant disease diagnosis and recommendations for development of appropriate tools. Smart Agricultural Technology, 3, 100083. doi:10.1016/j.atech.2022.100083.

Bi, C., Wang, J., Duan, Y., Fu, B., Kang, J. R., & Shi, Y. (2022). MobileNet Based Apple Leaf Diseases Identification. Mobile Networks and Applications, 27(1), 172–180. doi:10.1007/s11036-020-01640-1.

Bouguettaya, A., Zarzour, H., Kechida, A., & Taberkit, A. M. (2022). Deep learning techniques to classify agricultural crops through UAV imagery: a review. Neural Computing and Applications, 34(12), 9511–9536. doi:10.1007/s00521-022-07104-9.

Meshram, V., Patil, K., Meshram, V., Hanchate, D., & Ramkteke, S. D. (2021). Machine learning in agriculture domain: A state-of-art survey. Artificial Intelligence in the Life Sciences, 1, 100010. doi:10.1016/j.ailsci.2021.100010.

Chauhan, P., Mandoria, H. L., Negi, A., & Rajput, R. S. (2021). Plant Diseases Concept in Smart Agriculture Using Deep Learning. Smart Agricultural Services Using Deep Learning, Big Data, and IoT, 139–153, IGI Global, Hershey, United States. doi:10.4018/978-1-7998-5003-8.ch008.

Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., & Wojna, Z. (2016). Rethinking the Inception Architecture for Computer Vision. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). doi:10.1109/cvpr.2016.308.

Szegedy, C., Ioffe, S., Vanhoucke, V., & Alemi, A. A. (2017). Inception-v4, inception-resnet and the impact of residual connections on learning. Thirty-first AAAI conference on artificial intelligence, 4-9 February, San Francisco, United States.

Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., ... & Adam, H. (2017). Mobilenets: Efficient convolutional neural networks for mobile vision applications. arXiv preprint. doi:10.48550/arXiv.1704.04861.

Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., & Chen, L.-C. (2018). MobileNetV2: Inverted Residuals and Linear Bottlenecks. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. doi:10.1109/cvpr.2018.00474.

Wang, J., Bretz, M., Dewan, M. A. A., & Delavar, M. A. (2022). Machine learning in modelling land-use and land cover-change (LULCC): Current status, challenges and prospects. Science of the Total Environment, 153559. doi:10.1016/j.scitotenv.2022.153559.

Guo, Y., Liu, Y., Oerlemans, A., Lao, S., Wu, S., & Lew, M. S. (2016). Deep learning for visual understanding: A review. Neurocomputing, 187, 27–48. doi:10.1016/j.neucom.2015.09.116.

Kaya, Y., & Gürsoy, E. (2023). A MobileNet-based CNN model with a novel fine-tuning mechanism for COVID-19 infection detection. Soft Computing, 1-15. doi:10.1007/s00500-022-07798-y.

Ferentinos, K. P. (2018). Deep learning models for plant disease detection and diagnosis. Computers and Electronics in Agriculture, 145, 311–318. doi:10.1016/j.compag.2018.01.009.

Brahimi, M., Boukhalfa, K., & Moussaoui, A. (2017). Deep Learning for Tomato Diseases: Classification and Symptoms Visualization. Applied Artificial Intelligence, 31(4), 299–315. doi:10.1080/08839514.2017.1315516.

Fuentes, A., Yoon, S., Kim, S., & Park, D. (2017). A Robust Deep-Learning-Based Detector for Real-Time Tomato Plant Diseases and Pests Recognition. Sensors, 17(9), 2022. doi:10.3390/s17092022.

Amara, J., Bouaziz, B., & Algergawy, A. (2017). A deep learning-based approach for banana leaf diseases classification. Datenbanksysteme für Business, Technologie und Web (BTW 2017)-Workshopband, 6-10 March, 2017, Stuttgart, Germany.

Sladojevic, S., Arsenovic, M., Anderla, A., Culibrk, D., & Stefanovic, D. (2016). Deep Neural Networks Based Recognition of Plant Diseases by Leaf Image Classification. Computational Intelligence and Neuroscience, 2016. doi:10.1155/2016/3289801.

Atabay, H. A. (2017). Deep Residual Learning for Tomato Plant Leaf Disease Identification. Journal of Theoretical & Applied Information Technology, 95(24).

Guo, Y., Zhang, J., Yin, C., Hu, X., Zou, Y., Xue, Z., & Wang, W. (2020). Plant Disease Identification Based on Deep Learning Algorithm in Smart Farming. Discrete Dynamics in Nature and Society, 2020. doi:10.1155/2020/2479172.

Al-Tarawneh, M. S. (2013). An empirical investigation of olive leave spot disease using auto-cropping segmentation and fuzzy C-means classification. World Applied Sciences Journal, 23(9), 1207–1211. doi:10.5829/idosi.wasj.2013.23.09.1000.

Entuni, C. J., Afendi Zulcaffle, T. M., & Kipli, K. (2020). Severity Estimation of Plant Leaf Diseases Using Segmentation Method. Applied Science and Engineering Progress, 14(1). doi:10.14416/j.asep.2020.11.004.

Chouhan, S. S., Singh, U. P., & Jain, S. (2020). Applications of Computer Vision in Plant Pathology: A Survey. Archives of Computational Methods in Engineering, 27(2), 611–632. doi:10.1007/s11831-019-09324-0.

Singh, V., & Misra, A. K. (2017). Detection of plant leaf diseases using image segmentation and soft computing techniques. Information Processing in Agriculture, 4(1), 41–49. doi:10.1016/j.inpa.2016.10.005.

Sengupta, D. (2019). Deep learning architectures for automated image segmentation. EngrXiv (Engineering Archive), 1-70. doi:10.31224/

Sharma, P., Berwal, Y. P. S., & Ghai, W. (2020). Performance analysis of deep learning CNN models for disease detection in plants using image segmentation. Information Processing in Agriculture, 7(4), 566–574. doi:10.1016/j.inpa.2019.11.001.

Geetharamani, G., & Pandian, A. (2019). Identification of plant leaf diseases using a nine-layer deep convolutional neural network. Computers & Electrical Engineering, 76, 323-338. doi:10.1016/j.compeleceng.2019.04.011.

Bhange, M., & Hingoliwala, H. A. (2015). Smart Farming: Pomegranate Disease Detection Using Image Processing. Procedia Computer Science, 58, 280–288. doi:10.1016/j.procs.2015.08.022.

Haque, I., Alim, M., Alam, M., Nawshin, S., Noori, S. R. H., & Habib, M. T. (2022). Analysis of Recognition Performance of Plant Leaf Diseases Based on Machine Vision Techniques. Journal of Human, Earth, and Future, 3(1), 129-137. doi:10.28991/HEF-2022-03-01-09.

Pinki, F. T., Khatun, N., & Islam, S. M. (2020). Visual Features based Paddy Leaf Disease Recognition, its Severity Detection and Remedy Prediction using K-means Clustering and AdaBoost. Journal of Image Processing & Pattern Recognition Progress, 7(3), 41-52.

Poonguzhali, R., & Vijayabhanu, A. (2019). Crop condition assessment using machine learning. International Journal of Recent Technology and Engineering, 7(6), 897–900.

Kumar, A., & Tiwari, A. (2019). A Comparative Study of Otsu Thresholding and K-means Algorithm of Image Segmentation. International Journal of Engineering and Technical Research (IJETR), 9(5). doi:10.31873/ijetr.9.5.2019.62.

Kumari, Ch. U., Jeevan Prasad, S., & Mounika, G. (2019). Leaf Disease Detection: Feature Extraction with K-means clustering and Classification with ANN. 2019 3rd International Conference on Computing Methodologies and Communication (ICCMC). doi:10.1109/iccmc.2019.8819750.

Full Text: PDF

DOI: 10.28991/ESJ-2023-07-02-013


  • There are currently no refbacks.

Copyright (c) 2023 Mercelin Francis, Kalaiarasi Sonai Muthu Anbananthen, Deisy Chelliah