Evolution of Eye Reduction and Loss in Trilobites and Some Related Fossil Arthropods

Brigitte Schoenemann

Abstract


The fossil record of arthropod compound eyes reflects different modes and occasions of eye reduction and blindness. In the best-studied fossil examples, the trilobites [trilobites: extinct arthropods, dominant during the Palaeozoic], which have an excellent geological record, eyes are primary structures, and in all known genera which lack them, eye-loss is always secondary. Once the eyes were lost, they never were never re-established. The most striking examples occur in the Upper Devonian, when two unrelated major groups of trilobites, with different kinds of eyes, underwent eye reduction and even total loss of the eyes over the same time period, undoubtedly due to long-term environmental change. One reason is that a mud blanket spread over a vast area, there was no firm substrate, and many trilobites became small and many became endobenthic, reducing or losing their eyes in the process. Toxic environmental conditions may also have had an effect. Certain coeval forms remained, however, which still possess perfectly good compound eyes. Either they found vacant refuges where they could survive, or alternatively their visual systems were elaborate enough to adapt to the changing conditions. Another inducement for evolving small, reduced compound eyes is to become a tiny organism oneself, with simply not enough space to establish a regular and functional compound eye, and in such minaturised eyes special adaptations for capturing enough photons are necessary. Thus very small compound eyes often establish wide acceptance angles of their ommatidia, collecting light over large angular ranges of space and it is beneficial to have a wide rhabdom provided that it is short, has a wide lens diameter, and perhaps even possess highly sensitive receptor cells. We find such a miniaturised system in the first recorded planktonic trilobite. Another kind of reduction of a compound eye, or parts of it, also occurs, if selective pressure claims for a high specialisation of eyes that results in several facets fusing into a single functional unit. This probably can be found in phacopid trilobites, ~400 million years old. Here the enlarged aperture of a resulting large lens may allow vision under dim light conditions such as at greater depth. The fossil record gives relatively little evidence about parasites, which often have reduced eyes. Agnostida are blind relatives of trilobites which lived during the Cambrian and Ordovician. An early suggestion was that some of these were parasitic, but this was never commonly adopted. Finally penstastomids (Crustacea), worm-like parasitic organisms, already have been blind from the Cambrian (~487Ma).

Keywords


Blindness; Eye Reduction; Compound Eye; Eye; Vision; Energy Costs Of Vision; Evolution; Biodiversification; Adaptation; Ecological Niche; Plankton; Deep Sea; Miniaturization; Optics; Palaeozoic; Trilobite; Crustacean; Arthropod; Invertebrate; Plankton.

References


Land, M. F., and Fernald, R. D. “The evolution of eyes”. Annual Review of Neuroscience, 15, 1992, 1-29. doi: 10.1016/S0959-4388(00)00114-8.

Jenkins, R.J. F. “Functional and ecological aspects of Ediacaran assemblages”. In Origin and Early Evolution of the Metazoa; Lipps,H. J. and P.W. Signor, P. W., Eds.; Plenum Press, New York and London, 1992; pp. 131-176. doi: 10.1007/978-1-4899-2427-8

Vickers-Rich, P., and Komarower, P. “The rise and fall of the Ediacaran biota”. Geological Society of London, London, 2007, 275 pp. doi: 10.1144/SP286.0.

Brasier, M. “Darwin's lost world: the hidden history of animal life”. Oxford University Press, Oxford, 2009, 304 pp. doi: 10.1016/S0262-4079(09)60382-1.

Land, M. F., and Nilsson, D. E.” Animal eyes”. Oxford University Press, Oxford, 2012, 271 pp. doi: 10.1111/j.1463-6395.2012.00570.x.

Schoenemann, B., Liu, J-N., Shu, D-G., Han, J-A. & Zhang, Z-F. “A Miniscule Optimised Visual System in the Lower Cambrian”. Lethaia, 2009; 42, 265–273. doi: 10.1111/j.1502-3931.2008.00138.x.

Schoenemann, B., and Clarkson E. N. K. “At First Sight – Functional Analysis of Lower Cambrian eye systems”. Palaeontographica A, 2012; 297,123-149. doi: 10.1127/pala/297/2012/123.

Schoenemann, B., and Clarkson E. N. K. “The eyes of Leanchoilia”. Lethaia, 2012; 45, 524–531. doi: 10.1111/j.1502-3931.2012.00313.x.

Lee, M. S.; Jago, J. B.; García-Bellido, D. C.; Edgecombe, G.D.; Gehling, J.G., and Paterson, J. R. “Modern optics in exceptionally preserved eyes of early Cambrian arthropods from Australia”. Nature, 2011; 474, 631–634. doi: 10.1038/nature10097.

Paterson, J.R., García-Bellido, D.C., Lee, M.S., Brock, G.A., Jago, J.B. And Edgecombe, G.D. 2011. “Acute vision in the giant Cambrian predator Anomalocaris and the origin of compound eyes”. Nature, 480; 237–240. doi: 10.1038/nature10698.

Zhao, F.-C., Bottjer, D. J., and Hu, S.-X. “Complexity and diversity of eyes in Early Cambrian ecosystems.” Sci. Rep. 2013; 3, 2751. doi: 10.1038/srep02751.

Strausfeld, N. J.; Ma, X.-O., Edgecombe, G. D.; Fortey, R. A.; Land, M. F.; Liu, Y., Cong, P.-Y., and Hou, X.-G. “Arthropod eyes: The early Cambrian fossil record and divergent evolution of visual systems”. Anthrop. Struct. Dev., 2016; 45, 152-172. doi: 10.1016/j.asd.2015.07.005.

Reis, M.; Tharwornwattana, Y.; Angelis, K.; Telford, M. J.; Donoghue, C. J. , and Yang, Z. “Uncertainty in the timing of origin of animals and the limits of precision in molecular timescales”. Curr. Biol.; 25, 2939-2950. doi: 10.1016/j.cub.2015.09.066.

Parker, A. R. “Colour in Burgess Shale animals and the effect of light on evolution in the Cambrian”. Proc. Roy. Soc. London B, 1998; 265,967–972. doi: 10.1098/rspb.1998.0385.

Pentecost, Michael J. “In the Blink of an Eye.” Journal of the American College of Radiology 7, no. 6 (June 2010): 396. doi: 10.1016/j.jacr.2010.03.003.

Schoenemann, B., Pärnaste, H., and Clarkson, E. N. K. “Structure and function of a compound eye, more than half a billion years old”. Proceedings of the National Academy of Sciences of the United States of America (PNAS), 2017; 114, 13489-13494. doi: 10.1073/pnas.1716824114.

Wilkinson, M.; Garbout, A., and Samantha, M. M. “The visual system of caecilian amphibians”. Integr. Comp. Biol., 2018; accepted.

Emerling, C. A. “Regressed but Not Gone: Patterns of Vision Gene Loss and Retention in Subterranean Mammals”. Integr. Comp. Biol., 2018; icy004. doi: 10.1093/icb/icy004.

Summer-Rooney, L. H.; Sigwart, J. D.; Smith L; Mcafee, J., and Wlliams, S. T. “Repeated eye reduction events reveal multiple pathways to loss in deep sea snails”. Integr. Comp. Biol., 2018; accepted.

Tierney, S. M.; Langille, B.; Humphreys, W. F.; Austin, A. D., and Cooper, S. J. B. Massive parallel regression: genetic mechanisms for eye loss amongst subterranean diving beetles. Integr. Comp. Biol., 2018, icy035. doi: 10.1093/icb/icy035.

Stern, D. B., and Crandall, K. A. “Convergent and divergent transciotome evolution in the eyes of blind cave crayfish”. Integr. Comp. Biol., 2018, icy029. doi: 10.1093/icb/icy029.

Yoshizawa, M.; Hixon, W., and Jefferey W.R. “Neural Crest Transplantation Reveals Key Roles in the Evolution of Cavefish Development”. Integr. Comp. Biol., 2018, 58; 411-420. doi: 10.1093/icb/icy006.

Re, C.; Fišer, Ž.; Perez, J.; Tacdol, A.; Trontelj, P., and Protas, M. E. “Common genetic basis of eye and pigment loss in two distinct cave populations of the isopod crustacean Asellus aquaticus”. Integr. Comp. Biol., 2018; 58, 421-430. doi: 10.1093/icb/icy028.

Valdez-Lopez, J.; Mary W Donohue, M. W.; Bok M. J., Wolf, J., Cronin T. W., and Porter M. L. “Sequence, Structure and Expression of Opsins in the Monochromatic Stomatopod Squilla mantis”. Integr. Comp. Biol., 2018; 386–397. doi: 10.1093/icb/icy007.

Exner, S. „Die Physiologie der facettierten Augen von Krebsen und Insekten“. 1891, Deuticke, Leipzig, Wien, 206 pp.

Land, M. F. “Vision in Invertebrates”. In Handbook of Sensory Physiology VII/6B (Autrum, H. Ed.) , 1981; Springer, Berlin, pp. 471-592. doi: 10.1002/iroh.19760610313.

Cronin, T.W.; Johnson, N. S.; Marshall, N.J., and Warrant, E. J. “Visual Ecology”. 2014; Princeton University Press, Princton, Oxford, 432 pp. doi:10.4172/2161-0940.1000180.

Fortey, R. A. “Classification”. In Treatise on Invertebrate Paleontology, Part O, Arthropoda I. Trilobita. Revised, (ed. Kaesler, R. L.), 1998, Geological Society of America and University of Kansas Press, Lawrence, pp. 289–302. doi: 10.1111/j.1558-5646.1965.tb01697.x

Fortey R. A., and Whittington, H. B. “The Trilobita as a natural group”. Hist. Biol. 1989; 2, 125-138. doi: 10.1080/08912968909386496.

Scholtz, G., and Edgecombe, G. D. “Heads, Hox and the phylogenetic position of trilobites”. Crustacean Issues, 2005; 16, 139–166, doi: 10.1201/9781420037548.ch6.

Legg, D. A.; Sutton, M. D., and Edgecombe, G. D. “Arthropod fossil data increase congruence of morphological and molecular phylogenies”. Nature Communictons, 2013. doi: 10.1038/ncomms3485.

Fortey R. A., and Owens, R. M. “Feeding habits in trilobites”. Palaeontology, 1999; 42,429–465. doi: 10.1111/1475-4983.00080.

Clarkson E. N. K.; Levi-Setti, R., and Horváth, G. “The eyes of trilobites: The oldest preserved visual system”. Arthrop. Struct. & Dev. 2006; 35, 247-259. doi: 10.1016/j.asd.2006.08.002.

McGhee, G. R. “The Late Devonian Mass Extinction: the Frasnian/Famennian Crisis”. Columbia University Press, New York, 1996; 303 pp. doi: 10.1017/S0016756800024705.

Algeo T. J. ; Scheckler, S. E., and Maynard, J.B. „Effects of the Middle to Late Devonian spread of vascular land plants on weathering regimes, marine biota, and global climate”. In Plants Invade the Land: Evolutionary and Environmental Approaches, P. E. Gensel P. E., and Edwards, D. P., EDS., Columbia Univiversity Press, New York, 2001; pp. 213-236. doi: 10.7312/gens11160.

Sole, R. V., and Newman, M. “Extinctions and Biodiversity in the Fossil Record” - Volume Two, The earth system: biological and ecological dimensions of global environment change. In Encyclopedia of Global Environmental Change, T. Munn Ed., John Wiley & Sons, Hoboken (Belgium). 2001, pp. 297-391. doi: 10.1007/s00114-003-0421-8.

McNamara K. J., and Feist R. “The effect of environmental changes on the evolution of Late Devonain trilobites from the northern Canning Basin, Western Australia”. Geol. Soc. London, Spec pub., 2016; 423, 251-271. doi: 10.1144/SP423.5.

Caplan M. L., and Bustin R. M. “Devonian-Carboniferous Hangenberg mass extinction event, widespreadorganic-rich mudrock and anoxia: causes and consequences”. Palaeogeography, Palaeoclimatology and Palaeoecology 1999; 148, 187-207. doi: 10.1016/S0031-0182(98)00218-1.

Sallan, L. C., and Coates, M. I. “End-Devonian extinction and a bottleneck in the early evolution of modern jawed vertebrates”. Proceedings of the National Academy of Sciences of the United States of America (PNAS) 2010; 107, 10131-10135. doi: 10.1073/pnas.0914000107.

Marynowski, L.; Zatoń, M.; Rakociński, M.; Filipiak, P.; Kurkiewicz, S., and Pearce, Tj. “Deciphering the upper Famennian Hangenberg Black Shale depositional environments based on multi-proxy record”. Palaeogeography, Palaeoclimatology, Palaeoecology 2012; 346/347, 66–86. doi: 10.1016/j.palaeo.2012.05.020.

Racki, G. “Toward understanding Late Devonian global events: few answers, many questions”. In Understanding Late Devonian and Permian-Triassic Biotic and Climatic Events: Towards an Integrated Approach, Over, D. J., Morrow R., and P. B. Wignall, P. B. Eds., Elsevier, Amsterdam. 2005; pp. 5-36.

Algeo T. J., and Scheckler, S. E. ”Terrestrial-marine teleconnections in the Devonian: links between the evolution of land plants, weathering processes, and marine anoxic events”. Phil. Trans. Roy. Soc. London B 1998; 353, 113-130. doi: 10.1098/rstb.1998.0195.

Algeo T. J.; Berner, R. A.; Maynard J. P., and Scheckler, S. E. “Late Devonian oceanic anoxic events and biotic crises: "Rooted" in the evolution of vascular land plants?” GSA Today 1995; 5, 63–66. doi: 10.5194/cp-2017-112.

McNamara K. J., and Feist, R. “Patterns of trilobite evolution and extinction during the Frasnian/Famennian mass extinction Canning Basin., Western Australia. In Advances in trilobite research Rabano I.; Gozalo, R., and García -Bellido, D), Guardernos del Museo Geominero 2008; 9, 269-274. doi: 10.13140/2.1.1806.9283.

Schoenemann, B. , and Clarkson E. N. K. “Discovery of some 400 million year-old sensory structures in the compound eyes of trilobites”. Sci. Rep. 2013; 3, 1429. doi: 10.1038/srep01429.

Clarkson, E. N. K., and Zhang, X-G. Ontogeny of the Carboniferous trilobite Paladin eichwaldi shunnerensis (King, 1914). Transa. Roy. Soc. Edinb.: Earth Sci.1991; 82, 277–295. doi: 10.1017/S026359330000417X.

Strauss cited after: Hesse, R. & Dorflein, F. „Das Sehen der niederen Tiere“ (Vision in lower organisms). Gustav Fischer Verlag, Jena, 1909; 568 pp.

Nilsson, D.E. & Osorio, D. “Homology and parallelism in arthropod sensory processing”. Arthropod relationships 1997; 55, 333-347. doi: 10.1007/978-94-011-4904-4_25.

Richter, R. & Richter, E. „Die Trilobiten des Oberdevon“. Beiträge zur Kenntnis devonischer Trilobiten. IV. Abh.d.Preuß.Geol.LA 1926; 99, 1–314. doi: 10.5962/bhl.title.49511.

Clarkson, E. N. K. “Environmental significance of eye-reduction in trilobites and recent arthropods”. Marine Geology 1967; 5, 367-375. doi: 10.1016/0025-3227(67)90046-1.

Feist, R. “The late Devonian trilobite crises”. Historical Biology 1991; 5, 197-214. doi: 10.1080/10292389109380401.

Feist, R. “Effect of paedomorphosis in eye reduction on patterns of evolution and extinction in trilobites”. In Evolutionary Change and Heterochrony; Holland P. W. A. Ed.; Wiley, Chichester; 1995. pp. 225-244. doi: 10.1046/j.1420-9101.1996.9061034.x.

Feist, R., and Clarkson, E. N. K. “Environmentally controlled phyletic evolution, blindness and extinction in Late Devonian tropidocoryphine trilobites”. Lethaia 1989; 22, 359-373. doi: 10.1111/j.1502-3931.1989.tb01435.x.

Feist, R., and Schindler, E. “ Trilobites during the Frasnian Kellwasser crisis in Eurpean Late Devonian cephalopod limestones”. Courier Forschungsinstitut Senckenberg 1994; 169, 195-223.

Feist, R., Mcnamara, K. J., Crônier, C., and Lerosey-Aubril, R. “Patterns of extinction and recovery of phacopid trilobites during the Frasnian-Famennian (Late Devonian)”. Geol. Mag. 2009; 146,12-33. doi: 10.1017/S0016756808005335.

Crônier, C., and Feist, R. “Evolution et systematique du groupe Cryphops (Phacopina, Trilobita) du Devonien superiere”. Senckenbergiana Lethaea 2000; 79, 501-515. doi: 10.1007/BF03043651.

Crônier, C. , Bartzsch, K., Weyer, D. , and Feist, R. “Larval morphology and ontogeny of a late Devonian phacopid with reduced sight from Thuringia, Germany”. J. Paleont. 1999; 73, 240-255. doi: 10.1017/S0022336000027748.

Lerosey-Aubril, R. “Ontogeny of Drevermannia and the origin of blindness in late Devonian proetoid trilobites”. Geol. Mag. 2006; 143, 89-104. doi: 10.1017/S0016756805001421.

Lerosey-Aubril, R., and Feist, R. “Quantitative approach of diversity and decline in late Palaeozoic trilobites. In Global Biodiversity, Extinction Intervals and Biogeographic Perturbations through Time”;. Talent, J. A. Ed.; Springer, Berlin, 2012; p. 535-555. doi: 10.1007/978-90-481-3428-1.

McNamara K. J., Feist, R., and Ebach, R. “ Patterns of evolution and extinction in the last harpetid trilobites during the Late Devonian (Frasnian)”. Palaeontology 2009; 52, 11-33. doi: 10.1111/j.1475-4983.2008.00832.x.

McNamara, K. J. “Evolutionary Change and Heterochrony”. Wiley, Chichester 1995; 286 pp. doi: 10.1111/j.1095-8312.2001.tb01355.x.

Feist, R., and McNamara, K. J. “Patterns of evolution and extinction in proetid trilobites during the Late Devonian mass extinction event, Canning Basin, Western Australia”. Palaeontology 2013; 56, 229–259. doi:10.1111/j.1475-4983.2012.01191.x.

Chatterton, B. D. E. “Ontogenetic studies of Middle Ordovician trilobites from the Esbataottine Formation; Mackenzie Mountains, Canada”. Palaeontographica A 1980; 171, 1–74.

Struve, W. ”Beitrage zur Kenntnis der Phacopina (Trilobita), 9:Phacops (Omegops) n. sg. (Trilobita; Ober-Devon)“. Senckenbergiana Lethaea 1976; 56, 429-451.

Brauckmann, C. “Eine weitere Art der Cyrtosymbolinae mit vollständig erhaltenem Thorax (Trilobita, Ober-Devon)“. (Another species of Cyrtosymbolinae with a complete thorax.) Jahresberichte des naturwissenschaftlichen Vereins Wuppertal 1985; 38, 150–153.

Brauckmann, C., and Hahn, G. “Trilobites as Index Fossils at the Devonian-Carboniferous Boundary”. In The Devonian-Carboniferous boundary, Paproth E., and Streel M. Eds., Courier Forschungsinstitut Senckenberg 1984; 67, pp. 11–14.

Brauckmann, C. & Koch, L. “Trilobiten aus dem Sauerland“. (Trilobites from the Sauerland). Westfalen im Bild, Paläontologie in Westfalen 1987; 4, 1–43.

Brauckmann C., Chlupáč I. , and Feist, R. “Trilobites at the Devonian-Carboniferous Boundary”. In Devonian-Carboniferous Boundary. Streel, M., Sevastopulo, G., and Paproth, E., Eds; Ann. Soc. géol. Belg. 1993; 115, 507- 518.

Hahn, G., and Hahn, R.“Die Trilobiten des Ober-Devon, Karbon und Perm. (The trilobites of the Upper Devonian, Carboniferous and Permian.)” In Leitfossilien (Index fossils); K.Krömmelbein, K. Ed.; Borntraeger, Stuttgart, 1975; 127 pp. doi: 10.1017/S0016756800045295.

Hahn, G., and Wunn-Petry, I. “Seltene Trilobiten aus der nasutus-Zone (Kulm-Fazies, Unter-Karbon) (Rare trilobites from the nastus-zone (Kulm, Lower Carboniferous).) “ Senckenbergiana lethaea 1983; 64, 237–255.

Hahn, G., Hahn, R., and Brauckmann, C. “Trilobiten mit „Drevermannia-Habitus“ im Unter-Karbon (Trilobites with „Drevermannia-Habit“). Cour. Forsch. Inst. Senkenberg 1984; 169, 155-193.

Owens, R.M. “A review of Permian trilobite genera”. Special papers in Palaeontology 1983; 30, 15-41.

Owens, R. M. “The stratigraphical distribution and extinctions of Permian trilobites”. Special papers in Palaeontology 2003; 70, 377-397.

Owens, R. M. “Pseudoextinctions in late Devonian proetide trilobites”. Historical Biology 1994; 9, 7-22. doi: 10.1080/10292389409380498.

Feist, R. & Petersen, M. S. “Origin and spread of Pudoproetus, a survivor of the late Devonian trilobite crisis”. J. Paleontol. 1995; 69, 99-109. doi: 10.1017/S0022336000026950.

Benton, M. J. “When Life Nearly Died: The Greatest Mass Extinction of All Time”. Thames and Hudson, London, New York, 2003; 36 pp. doi: 10.1017/S0016756803218343.

Bergstrom, C. T., and Dugatkin, L. A. “Evolution”. Norton, New York, 2012; 677 pp.

Ogdena,D. E., and Sleep, N.H. ”Explosive eruption of coal and basalt and the end-Permian mass extinction”. Proceedings of the National Academy of Sciences of the United States of America (PNAS) 2011; 109, 59–62. doi: 10.1073/pnas.1118675109.

Sobolev, S. V., Sobolev, A.V., Kuzmin, D.V., Krivolutskaya, N.A., Petrunin, A.G., Arndt, N.T., Radko, V. A. , and Vasiliev, Y. R. “Linking mantle plumes, large igneous provinces and environmental catastrophes”. Nature 2011; 477, 312–316. doi: 10.1038/nature10385.

Retallack, G. J., Seyedolali, A., Krull, E.S., Holser, W. T., Ambers C. P.,and Kyte F. T. “Search for evidence of impact at the Permian–Triassic boundary in Antarctica and Australia”. Geology 1998; 26, 979–982. doi: 10.1130/0091-7613(1998)026<0979:SFEOIA>2.3.CO;2.

Wong-Riley, Margaret. “Energy Metabolism of the Visual System.” Eye and Brain (July 2010): 99. doi:10.2147/eb.s9078.

Wehner, R., and Gehring W. “Zoologie“. Thieme, Stuttgart, 2007; 953pp. doi: 10.1002/biuz.200890037.

Penzlin, H. “Lehrbuch der Tierphysiologie“ (Textbook of Animal Physiology). Spektrum Akademischer Verlag, Heidelberg, 2009; 970 pp.

Horridge, G. A. “Insects which turn and look”. Endeavour 1977; 1, 7-17. doi: 10.1016/0160-9327(77)90004-7.

Horridge, G. A. “The separation of visual axes in apposition compound eyes”. Phil. Trans. Roy. Soc. London B 1978; 285, 1-59. doi: 10.1098/rstb.1978.0093.

Snyder, A. W. “Acuity in Compound eyes: Physical Limitations and Design”. J. comp. Physiol. 1977; 116, 161-182. doi: 10.1007/BF00605401.

Snyder, A. W. “Physics of vision in compound eyes”. In Comparative physiology and evolution of vision in invertebrates, Autrum, H. Ed.; Springer, Berlin 1979; pp. 225-313. doi: 10.1007/978-3-642-66999-6_5.

Snyder, A. W., Stavenga, D. G., and Laughlin, S. B. “Spatial information capacity of compound eyes”. J. comp. Physiol. 1977; 116, 183–207. doi: 10.1007/BF00605402.

Schoenemann, B., Clarkson, E. N. K., Ahlberg, A., and Dies Álvarez, M. E. “A Tiny Eye Indicating a Planktonic Trilobite”. Palaeontology 2010; 53, 695-701. doi: 10.1111/j.1475-4983.2010.00966.x.

Walossek, D. “The Upper Cambrian Rehbachiella and the phylogeny of Branchiopoda and Crustacea“. Fossils & Strata 1993; 32, 1-202. doi: 10.1111/j.1502-3931.1993.tb01537.x.

Castellani C., Haug, J. T., Haug, C., Maas, A., Schoenemann, B., and Waloszek, D. “Exceptionally well-preserved isolated eyes from Cambrian ‘Orsten’ fossil assemblages of Sweden”. Palaeontology 2012; 55, 553–566. doi: 10.1111/j.1475-4983.2012.01153.x.

Schoenemann, B., Castellani, C., Clarkson, E. N. K, Haug, J. T., Maas, A., Haug, C., and Waloszek, D. “The sophisticated visual system of a tiny Cambrian crustacean: analysis of a stalked fossil compound eye”. Proc. Roy. Soc. London B 2012; 279, 1335–1340. doi: 10.1098/rspb.2011.1888.

Schoenemann, B. “The eyes of a tiny ‘Orsten’ crustacean – A compound eye at receptor level?” Vis. Res. 2013; 76, 89-93. doi: 10.1016/j.visres.2012.10.013.

Leung, T. L. F. “Fossils of parasites: what can the fossil record tell us about the evolution of parasitism?” Biol. Rev. 2017; 92, 410–430. doi: 10.1111/brv.12238.

Walossek, D., and Müller, K. J. “Pentastomid parasites from the Lower Palaeozoic of Sweden”. Trans. Roy. Soc. Edinburgh: Earth Sci. 1994; 85, 1–37. doi: 10.1017/S0263593300006295.

Siveter, D. J., Briggs, D. E. G., Siveter, D. J., and Sutton, M. D. “A 425-Million-Year-Old Silurian Pentastomid Parasitic on Ostracods”. Curr. Biol. 2015; 25, 1632-1637. doi: 10.1016/j.cub.2015.04.035.

Bergström, J., and Hou, X-G. “Early Palaeozoic non-lamellipedian arthropods. In Crustacea and Arthropod Relationships”, Koenemann, S., and Ronald, A. J., Eds., Taylor and Francis, New York, 2005; pp. 75-93.


Full Text: PDF

DOI: 10.28991/esj-2018-01151

Refbacks

  • There are currently no refbacks.


Copyright (c) 2018 Brigitte Schoenemann