A YOLO Detector Providing Fast and Accurate Pupil Center Estimation using Regions Surrounding a Pupil
Abstract
Doi: 10.28991/ESJ-2022-06-05-05
Full Text: PDF
Keywords
References
Guestrin, E. D., & Eizenman, M. (2006). General theory of remote gaze estimation using the pupil center and corneal reflections. IEEE Transactions on Biomedical Engineering, 53(6), 1124–1133. doi:10.1109/TBME.2005.863952.
Duchowski, A. T. (2003). Eye Tracking Techniques. Eye Tracking Methodology: Theory and Practice, 55–65, Springer, London. doi:10.1007/978-1-4471-3750-4_5.
Cognolato, M., Atzori, M., & Müller, H. (2018). Head-mounted eye gaze tracking devices: An overview of modern devices and recent advances. Journal of Rehabilitation and Assistive Technologies Engineering, 5, 1-13. doi:10.1177/2055668318773991.
Fuhl, W., Santini, T., Kasneci, G., & Kasneci, E. (2016). Pupilnet: Convolutional neural networks for robust pupil detection. arXiv preprint arXiv:1601.04902. doi:10.48550/arXiv.1601.04902.
Fuhl, W., Santini, T., Kasneci, G., Rosenstiel, W., & Kasneci, E. (2017). Pupilnet v2. 0: Convolutional neural networks for CPU based real time robust pupil detection. arXiv preprint arXiv:1711.00112. doi: 10.48550/arXiv.1711.00112.
Choi, J. H., Il Lee, K., Kim, Y. C., & Cheol Song, B. (2019). Accurate Eye Pupil Localization Using Heterogeneous CNN Models. 2019 IEEE International Conference on Image Processing (ICIP). doi:10.1109/icip.2019.8803121.
Xia, Y., Yu, H., & Wang, F. Y. (2019). Accurate and robust eye center localization via fully convolutional networks. IEEE/CAA Journal of Automatica Sinica, 6(5), 1127–1138. doi:10.1109/JAS.2019.1911684.
Lee, K.I., Jeon, J.H., Song, B.C. (2020). Deep Learning-Based Pupil Center Detection for Fast and Accurate Eye Tracking System. Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science. Springer, Cham, Switzerland. doi:10.1007/978-3-030-58529-7_3.
Kitazumi, K., & Nakazawa, A. (2019). Robust Pupil Segmentation and Center Detection from Visible Light Images Using Convolutional Neural Network. 2018 IEEE International Conference on Systems, Man, and Cybernetics (SMC). doi:10.1109/SMC.2018.00154.
King, D. E. (2009). Dlib-ml: A machine learning toolkit. Journal of Machine Learning Research, 10, 1755–1758.
Ronneberger, O. (2017). Invited Talk: U-Net Convolutional Networks for Biomedical Image Segmentation. Bildverarbeitung für die Medizin 2017. Informatik Aktuell. Springer, Berlin, Heidelberg. doi:10.1007/978-3-662-54345-0_3.
Zdarsky, N., Treue, S., & Esghaei, M. (2021). A Deep Learning-Based Approach to Video-Based Eye Tracking for Human Psychophysics. Frontiers in Human Neuroscience, 15. doi:10.3389/fnhum.2021.685830.
Mathis, A., Mamidanna, P., Cury, K. M., Abe, T., Murthy, V. N., Mathis, M. W., & Bethge, M. (2018). DeepLabCut: markerless pose estimation of user-defined body parts with deep learning. Nature Neuroscience, 21(9), 1281–1289. doi:10.1038/s41593-018-0209-y.
Insafutdinov, E., Pishchulin, L., Andres, B., Andriluka, M., Schiele, B. (2016). DeeperCut: A Deeper, Stronger, and Faster Multi-person Pose Estimation Model. Computer Vision – ECCV 2016. ECCV 2016. Lecture Notes in Computer Science. Springer, Cham, Switzerland. https://doi.org/10.1007/978-3-319-46466-4_3.
He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep Residual Learning for Image Recognition. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). doi:10.1109/cvpr.2016.90.
Kim, S., Jeong, M., & Ko, B. C. (2020). Energy Efficient Pupil Tracking Based on Rule Distillation of Cascade Regression Forest. Sensors, 20(18), 5141. doi:10.3390/s20185141.
Cai, H., Liu, B., Ju, Z., Thill, S., Belpaeme, T., Vanderborght, B., & Liu, H. (2018). Accurate eye center localization via hierarchical adaptive convolution. 29th British Machine Vision Conference. British Machine Vision Association, 3-6 September 2018, Newcastle, United Kingdom.
Lee, K.I., Jeon, J.H., Song, B.C. (2020). Deep Learning-Based Pupil Center Detection for Fast and Accurate Eye Tracking System. Computer Vision – ECCV 2020. Lecture Notes in Computer Science. Springer, Cham, Switzerland. https://doi.org/10.1007/978-3-030-58529-7_3.
Brousseau, B., Rose, J., & Eizenman, M. (2020). Hybrid eye-tracking on a smartphone with CNN feature extraction and an infrared 3D model. Sensors (Switzerland), 20(2), 543. doi:10.3390/s20020543.
Ou, W. L., Kuo, T. L., Chang, C. C., & Fan, C. P. (2021). Deep-learning-based pupil center detection and tracking technology for visible-light wearable gaze tracking devices. Applied Sciences (Switzerland), 11(2), 851.
Poulopoulos, N., Psarakis, E. Z., & Kosmopoulos, D. (2021). PupilTAN: A Few-Shot Adversarial Pupil Localizer. 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). doi:10.1109/cvprw53098.2021.00350.
Kang, D., & Chang, H. S. (2021). Low-complexity pupil tracking for sunglasses-wearing faces for glasses-free 3d Huds. Applied Sciences (Switzerland), 11(10), 4366. doi:10.3390/app11104366.
Larumbe-Bergera, A., Garde, G., Porta, S., Cabeza, R., & Villanueva, A. (2021). Accurate pupil center detection in off-the-shelf eye tracking systems using convolutional neural networks. Sensors, 21(20), 6847. doi:10.3390/s21206847.
Lin, Z., Liu, Y., Wang, H., Liu, Z., Cai, S., Zheng, Z., … Zhang, X. (2022). An eye tracker based on webcam and its preliminary application evaluation in Chinese reading tests. Biomedical Signal Processing and Control, 74, 103521. doi:10.1016/j.bspc.2022.103521.
Larumbe-Bergera, A., Porta, S., Cabeza, R., & Villanueva, A. (2019). SeTA. Proceedings of the 11th ACM Symposium on Eye Tracking Research & Applications. doi:10.1145/3314111.3319830.
Redmon, J., & Farhadi, A. (2018). Yolov3: An incremental improvement. arXiv preprint arXiv:1804.02767. doi:10.48550/arXiv.1804.02767.
Bradski, G. (2000). The openCV library. Dr. Dobb's Journal: Software Tools for the Professional Programmer, 25(11), 120-123.
Jesorsky, O., Kirchberg, K.J., Frischholz, R.W. (2001). Robust Face Detection Using the Hausdorff Distance. Audio- and Video-Based Biometric Person Authentication. AVBPA 2001. Lecture Notes in Computer Science, Springer, Berlin, Heidelberg. doi:10.1007/3-540-45344-X_14.
Larumbe, A., Cabeza, R., & Villanueva, A. (2018). Supervised descent method (SDM) applied to accurate pupil detection in off-the-shelf eye tracking systems. Proceedings of the 2018 ACM Symposium on Eye Tracking Research & Applications. doi:10.1145/3204493.3204551.
Levinshtein, A., Phung, E., & Aarabi, P. (2018). Hybrid eye center localization using cascaded regression and hand-crafted model fitting. Image and Vision Computing, 71, 17–24. doi:10.1016/j.imavis.2018.01.003.
DOI: 10.28991/ESJ-2022-06-05-05
Refbacks
- There are currently no refbacks.
Copyright (c) 2022 Wattanapong Kurdthongmee