Comparison of Machine Learning Approach for Waste Bottle Classification

Abdul Fadlil, Rusydi Umar, . Sunardi, Arief Setyo Nugroho


The use of machine learning for the image classification process is growing all the time. Many methods can be used to classify an image with good accuracy. Convolutional Neural Network (CNN) and Support Vector Machine (SVM) are popular methods for this case. The two approaches have differences in the data training process to achieve classification objectives. Although there are some differences between these approaches, there are some advantages to both of them. This research explores the comparison of the two CNN and SVM methods by comparing the training process carried out and the accuracy results of the classification. The process stages are divided into pre-processing, training, and testing. The objects used are ten waste plastic bottles with different brands of medium size with a total data of 1100 images. Based on the observations, both methods have advantages and disadvantages in the data training and classification process. However, from the results, CNN's accuracy is better than SVM. The accuracy of both networks is 99% for CNN and 74% for SVM, respectively. So, from the results of experiments that have been carried out in the study, it was found that CNN was still better than SVM.


Doi: 10.28991/ESJ-2022-06-05-011

Full Text: PDF


Convolutional Neural Network; Plastic Bottles; Support Vector Machine.


Ritchie, H., & Roser, M. (2018). Plastic pollution. Our World in Data. Available online: (accessed on May 2022).

Orset, C., Barret, N., & Lemaire, A. (2017). How consumers of plastic water bottles are responding to environmental policies? Waste Management, 61, 13–27. doi:10.1016/j.wasman.2016.12.034.

Wood, J., Paturi, S., Puri, P., Jakobsen, E. S., Shankar, S., Zejden, P., & Azzali, S. (2020). Plastic marine waste and its potential for Indonesian indigenous communities. Etropic: electronic journal of studies in the tropics, 19, 167-184. doi:10.25120/ETROPIC.19.1.2020.3697.

Loussaief, S., & Abdelkrim, A. (2016). Machine learning framework for image classification. 2016 7th International Conference on Sciences of Electronics, Technologies of Information and Telecommunications (SETIT). doi:10.1109/setit.2016.7939841.

He, X., & Peng, Y. (2017). Weakly supervised learning of part selection model with spatial constraints for fine-grained image classification. 4075-4081, 31st AAAI Conference on Artificial Intelligence, 4-9 February 2017, San Francisco, United States.

Sakr, G. E., Mokbel, M., Darwich, A., Khneisser, M. N., & Hadi, A. (2016). Comparing deep learning and support vector machines for autonomous waste sorting. 2016 IEEE International Multidisciplinary Conference on Engineering Technology (IMCET). doi:10.1109/imcet.2016.7777453.

Kokoulin, A. N., Tur, A. I., & Yuzhakov, A. A. (2018). Convolutional neural networks application in plastic waste recognition and sorting. 2018 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus). doi:10.1109/eiconrus.2018.8317281.

Jadhav, S. B., Udupi, V. R., & Patil, S. B. (2019). Convolutional neural networks for leaf image-based plant disease classification. IAES International Journal of Artificial Intelligence, 8(4), 328–341. doi:10.11591/ijai.v8.i4.pp328-341.

Chaiani, M., Selouani, S. A., Boudraa, M., & Sidi Yakoub, M. (2022). Voice disorder classification using speech enhancement and deep learning models. Biocybernetics and Biomedical Engineering, 42(2), 463–480. doi:10.1016/j.bbe.2022.03.002.

Shakil, S., Arora, D., & Zaidi, T. (2021). Feature based classification of voice based biometric data through Machine learning algorithm. Materials Today: Proceedings, 51, 240–247. doi:10.1016/j.matpr.2021.05.261.

Su, Y., Xu, J., Hong, D., Fan, F., Zhang, J., & Jing, P. (2021). Deep low-rank matrix factorization with latent correlation estimation for micro-video multi-label classification. Information Sciences, 575, 587–598. doi:10.1016/j.ins.2021.07.021.

Mansour, R. F., Escorcia-Gutierrez, J., Gamarra, M., Villanueva, J. A., & Leal, N. (2021). Intelligent video anomaly detection and classification using faster RCNN with deep reinforcement learning model. Image and Vision Computing, 112, 104229. doi:10.1016/j.imavis.2021.104229.

Hulyalkar S., Deshpande R., Makode K., K. S. (2018). Implementation of Smartbin Using Convolutional Neural Networks. International Research Journal of Engineering and Technology, 5(4), 3352–3358.

Hayat, S., Kun, S., Tengtao, Z., Yu, Y., Tu, T., & Du, Y. (2018). A Deep Learning Framework Using Convolutional Neural Network for Multi-Class Object Recognition. 2018 IEEE 3rd International Conference on Image, Vision and Computing (ICIVC). doi:10.1109/icivc.2018.8492777.

Pathak, A. R., Pandey, M., & Rautaray, S. (2018). Application of Deep Learning for Object Detection. Procedia Computer Science, 132, 1706–1717. doi:10.1016/j.procs.2018.05.144.

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. Advances in neural information processing systems, 25.

Szegedy, C., Wei Liu, Yangqing Jia, Sermanet, P., Reed, S., Anguelov, D., … Rabinovich, A. (2015). Going deeper with convolutions. 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). doi:10.1109/cvpr.2015.7298594.

Vapnik, V. (1999). The nature of statistical learning theory. Springer science & business media, Springer, United States. doi: 10.1007/978-1-4757-3264-1.

Thai, L. H., Hai, T. S., & Thuy, N. T. (2012). Image Classification using Support Vector Machine and Artificial Neural Network. International Journal of Information Technology and Computer Science, 4(5), 32–38. doi:10.5815/ijitcs.2012.05.05.

Nurhidayat, I., Pimpunchat, B., Noeiaghdam, S., & Fernández-Gámiz, U. (2022). Comparisons of SVM Kernels for Insurance Data Clustering. Emerging Science Journal, 6(4), 866-880. doi:10.28991/ESJ-2022-06-04-014.

Touati, R., Messaoudi, I., ElloumiOueslati, A., & Lachiri, Z. (2018). Classification of Helitron’s Types in the C.elegans Genome based on Features Extracted from Wavelet Transform and SVM Methods. Proceedings of the 11th International Joint Conference on Biomedical Engineering Systems and Technologies. doi:10.5220/0006631001270134.

Mao, W. L., Chen, W. C., Fathurrahman, H. I. K., & Lin, Y. H. (2022). Deep learning networks for real-time regional domestic waste detection. Journal of Cleaner Production, 344, 131096. doi:10.1016/j.jclepro.2022.131096.

Zhang, J., Yang, S., Bo, C., & Zhang, Z. (2021). Vehicle logo detection based on deep convolutional networks. Computers and Electrical Engineering, 90, 107004. doi:10.1016/j.compeleceng.2021.107004.

Kandel, I., Castelli, M., & Manzoni, L. (2022). Brightness as an Augmentation Technique for Image Classification. Emerging Science Journal, 6(4), 881-892. doi:10.28991/ESJ-2022-06-04-015.

Ali, K., Shaikh, Z. A., Khan, A. A., & Laghari, A. A. (2022). Multiclass skin cancer classification using EfficientNets – a first step towards preventing skin cancer. Neuroscience Informatics, 2(4), 100034. doi:10.1016/j.neuri.2021.100034.

Mahin, K. F., Robiuddin, M., Islam, M., Ashraf, S., Yeasmin, F., & Shatabda, S. (2022). PanClassif: Improving pan cancer classification of single cell RNA-seq gene expression data using machine learning. Genomics, 114(2), 110264. doi:10.1016/j.ygeno.2022.01.001.

Ali, A. A. A., & Mallaiah, S. (2021). Intelligent handwritten recognition using hybrid CNN architectures based-SVM classifier with dropout. Journal of King Saud University - Computer and Information Sciences. doi:10.1016/j.jksuci.2021.01.012.

Ahlawat, S., & Choudhary, A. (2020). Hybrid CNN-SVM Classifier for Handwritten Digit Recognition. Procedia Computer Science, 167, 2554–2560. doi:10.1016/j.procs.2020.03.309.

Lamberti, W. F. (2021). Blood cell classification using interpretable shape features: A Comparative study of SVM models and CNN-Based approaches. Computer Methods and Programs in Biomedicine Update, 1, 100023. doi:10.1016/j.cmpbup.2021.100023.

Sonmez, M. E., Eczacıoglu, N., Gumuş, N. E., Aslan, M. F., Sabanci, K., & Aşikkutlu, B. (2022). Convolutional neural network - Support vector machine based approach for classification of cyanobacteria and chlorophyta microalgae groups. Algal Research, 61, 102568. doi:10.1016/j.algal.2021.102568.

Han, T., Zhang, L., Yin, Z., & Tan, A. C. C. (2021). Rolling bearing fault diagnosis with combined convolutional neural networks and support vector machine. Measurement, 177, 109022. doi:10.1016/j.measurement.2021.109022.

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. 2016 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVRP). doi:10.1109/CVPR.2016.90.

Huang, G., Liu, Z., Van Der Maaten, L., & Weinberger, K. Q. (2017). Densely Connected Convolutional Networks. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). doi:10.1109/cvpr.2017.243.

Girshick, R., Donahue, J., Darrell, T., & Malik, J. (2014). Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation. 2014 IEEE Conference on Computer Vision and Pattern Recognition. doi:10.1109/cvpr.2014.81.

Girshick, R. (2015). Fast R-CNN. 2015 IEEE International Conference on Computer Vision (ICCV). doi:10.1109/iccv.2015.169.

Ren, S., He, K., Girshick, R., & Sun, J. (2017). Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39(6), 1137–1149. doi:10.1109/TPAMI.2016.2577031.

Mao, W. L., Fathurrahman, H. I. K., Lee, Y., & Chang, T. W. (2020). EEG dataset classification using CNN method. Journal of Physics: Conference Series, 1456(1), 12017. doi:10.1088/1742-6596/1456/1/012017.

Full Text: PDF

DOI: 10.28991/ESJ-2022-06-05-011


  • There are currently no refbacks.

Copyright (c) 2022 Abdul Fadlil, Rusydi Umar, Sunardi Sunardi, Arief Setyo Nugroho