Reaction of Carbon Dioxide Gas Absorption with Suspension of Calcium Hydroxide in Slurry Reactor

Zahrul Mufrodi, L. M. Shitophyta, Hary Sulistyo, . Rochmadi, Muhammad Aziz

Abstract


Chemical phenomena involving three phases (solid, liquid, and gas) are often found in the industry. Carbonate (CaCO3) is widely used in industries as a powder-making material in the cosmetic industry, a pigment in the paint industry, and filler in the paper and rubber industry. This research aim to study the ordering process carbonate deposits (CaCO3) from the absorption process of CO2 gas with Ca(OH)2 suspension. The absorption reaction of CO2 gas with Ca(OH)2 suspension was carried out in a stirred slurry tank reactor. Initially, the reactor containing water was heated to a certain temperature, then Ca(OH)2 was added to the reactor. Furthermore, CO2 gas with a certain flow rate and temperature (according to the reactor temperature) is flown with the help of a gas distributor. Samples were taken every 1 min until the concentration of Ca(OH)2 could not be detected (completely reacted). The variables in this study were: stirrer rotation speed (5.66711.067 rps), CO2 gas flow rate (34.0127–60.5503 c/s), and temperature (30–50°C). The mass transfer coefficient and the reaction rate coefficient were determined by minimizing Sum of Squares of Errors (SSE). This experimental process follows a dynamic regime. A dimensionless number relationship for the gas-liquid mass transfer for the value range is Re1 = 18928.76-38217.20, Sh = 0.07928 Reg0.4383 Rel0.4399 Sc0.6415 with an error of 5.19%. The dimensionless number relationship for solid-liquid mass transfer is Sh = 0.0001179 Reg0.4674 Rel0.5403 Sc1.444 with an error of 7.31%. The relationship between the reaction rate constant and the temperature in the 30-50 °C range can be approximated by the Arrhenius equation, namely kr = 1771000 e-2321.4/T cm3/mgmol/s with an error of 3.63%.

 

Doi: 10.28991/ESJ-2023-07-02-02

Full Text: PDF


Keywords


Ca(OH)2 Suspension; CO2 Absorption; Dynamic Regime; Mass Transfer; Slurry Stirred Tank Reactors.

References


Ramakrishna, C., Thenepalli, T., & Ahn, J. W. (2017). A brief review of aragonite precipitated calcium carbonate (PCC) synthesis methods and its applications-. Korean Chemical Engineering Research, 55(4), 443–455. doi:10.9713/kcer.2017.55.4.443.

Arifin, Z., Zainuri, M., Cahyono, Y., & Darminto. (2018). The Influence of Temperature and Gas Flow Rate on the Formation CaCO3 Vaterite Phase. IOP Conference Series: Materials Science and Engineering, 395, 012004. doi10.1088/1757-899x/395/1/012004.

Han, Y. S., Hadiko, G., Fuji, M., & Takahashi, M. (2005). Effect of flow rate and CO2 content on the phase and morphology of CaCO3 prepared by bubbling method. Journal of Crystal Growth, 276(3–4), 541–548. doi:10.1016/j.jcrysgro.2004.11.408.

Sun, Z., Luo, S., Qi, P., & Fan, L. S. (2012). Ionic diffusion through Calcite (CaCO3) layer during the reaction of CaO and CO2. Chemical Engineering Science, 81(1), 164–168. doi:10.1016/j.ces.2012.05.042.

Erdogan, N., & Eken, H. A. (2017). Precipitated Calcium carbonate production, synthesis and properties. Physicochemical Problems of Mineral Processing, 53(1), 57–68. doi:10.5277/ppmp170105.

Wang, T., Wang, J., & Jin, Y. (2007). Slurry reactors for gas-to-liquid processes: A review. Industrial and Engineering Chemistry Research, 46(18), 5824–5847. doi:10.1021/ie070330t.

Kim, B. J., Park, E. H., Choi, K. D., & Kang, K. S. (2017). Synthesis of CaCO3 using CO2 at room temperature and ambient pressure. Materials Letters, 190, 45–47. doi:10.1016/j.matlet.2016.12.030.

Jin, T., Tian, X., Hong, H., Zhu, N., Han, L., & Suo, Q. (2020). Study on preparation and crystalline transformation of nano- and micro-CaCO3 by supercritical carbon dioxide. Powder Technology, 370, 29–38. doi:10.1016/j.powtec.2020.05.021.

Liendo, F., Arduino, M., Deorsola, F. A., & Bensaid, S. (2021). Optimization of CaCO3 synthesis through the carbonation route in a packed bed reactor. Powder Technology, 377, 868–881. doi:10.1016/j.powtec.2020.09.036.

Shirsath, S. R., Sonawane, S. H., Saini, D. R., & Pandit, A. B. (2015). Continuous precipitation of calcium carbonate using sonochemical reactor. Ultrasonics Sonochemistry, 24, 132–139. doi:10.1016/j.ultsonch.2014.12.003.

Adnyani, N. M. L. G., Febrida, R., Karlina, E., Cahyanto, A., & Joni, I. M. (2020). Synthesis of nano calcium carbonate from natural CaO by CO2 fine bubbling method. 3rd International Conference on Condensed Matter and Applied Physics (ICC-2019). doi:10.1063/5.0003072.

Shafiu Kamba, A., Ismail, M., Tengku Ibrahim, T. A., & Zakaria, Z. A. B. (2013). Synthesis and characterisation of calcium carbonate aragonite nanocrystals from cockle shell powder (Anadara granosa). Journal of Nanomaterials, 2013, 1–10. doi:10.1155/2013/398357.

Park, S. Y., & Choi, W. S. (2004). Effects of operating factors on the particle size distribution and particle shape of synthesized precipitated CaCO3: Effect of reaction temperature, blowing rate of CO2 gas and initial slurry concentration of Ca(OH)2 on reaction completion time. Advanced Powder Technology, 15(1), 1–12. doi:10.1163/15685520460740034.

Fan, H., Song, H., Rao, Y., Wang, X., Zhu, G., Wang, Q., Qi, Y., Zhu, G., Gao, D., & Liu, J. (2019). Effect of calcium hydroxide concentration and stirring rate on the crystallization of the calcium carbonate on the surface of fly ash. BioResources, 13(3), 7017–7025. doi:10.15376/biores.13.3.7017-7025.

Babou-Kammoe, R., Hamoudi, S., Larachi, F., & Belkacemi, K. (2012). Synthesis of CaCO3 nanoparticles by controlled precipitation of saturated carbonate and calcium nitrate aqueous solutions. Canadian Journal of Chemical Engineering, 90(1), 26–33. doi:10.1002/cjce.20673.

Gong, J., Rong, S., Wang, X., & Zhou, Y. (2022). Critical review of catalytic degradation of formaldehyde via MnO2: From the perspective of process intensification. Journal of Cleaner Production, 134242. doi:10.1016/j.jclepro.2022.134242

Munawaroh, F., Muharrami, L. K., Triwikantoro, & Arifin, Z. (2018). The effect of CO2 gas flow rate on precipitated CaCO3 formed at room temperature. AIP Conference Proceedings. doi:10.1063/1.5054513.

Sheng, K., Ge, H., Huang, X., Zhang, Y., Song, Y., Ge, F., Zhao, Y., & Meng, X. (2020). Formation and Inhibition of Calcium Carbonate Crystals under Cathodic Polarization Conditions. Crystals, 10(4), 275. doi:10.3390/cryst10040275.

Johnstone, R., & Thring, M. W. (1957). Pilot plants, models, and scale-up methods in chemical engineering. McGraw-Hill, New York, United States.

Fernianti, D. (2000). Analysis of the reaction of solid CO2 and CaCO3 gases in a stirred tank slurry reactor. Ph.D. Thesis, Gadjah Mada University, Depok, Indonesia. (In Indonesian).

Vasconcelos, J. M. T., Orvalho, S. P., & Alves, S. S. (2002). Gas-liquid mass transfer to single bubbles: Effect of surface contamination. AIChE Journal, 48(6), 1145–1154. doi:10.1002/aic.690480603.

Fogler, H. S. (2010). Essentials of Chemical Reaction Engineering: Essenti Chemica Reactio Engi. Pearson Education, New York, United States.


Full Text: PDF

DOI: 10.28991/ESJ-2023-07-02-02

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Zahrul Mufrodi