Fear and Group Defense Effect of a Holling Type IV Predator-Prey System Intraspecific Competition

Rian Ade Pratama, Martha Loupatty, Hariyanto Hariyanto, Wahyu Caesarendra, Wahyu Rahmaniar


Field and experimental data on aquatic ecosystem species show the effect of fear on changing prey demographics. The fear effect has an impact on aquatic ecosystems, such as species migration to settled areas. In this paper, the type of research described is a literature study. The cost effect assigned to the reproductive system of the prey population and the predation function response are given as Holling Type IV for research purposes to model the fear effect. Some research novelties, the equilibrium points are all shown in the population dynamics system model with an analysis of positive equilibrium. Positive and biologically realistic equilibrium points were analyzed using the Routh-Hurwitz criterion which is mathematically a local asymptotically stable. A pair of imaginary eigenvalues with a negative real part can increase population growth. An equilibrium region showing equilibrium for several parameters such as extinction, no predators, and two populations coexisting in a sustainable manner. The correlation and fluctuation of fear and fear cost were investigated to obtain a better model. The results of the numerical simulations show that the prey population becomes more daring to fight or fighting power with significant prey growth rates or high predator mortality rates.


Doi: 10.28991/ESJ-2023-07-02-06

Full Text: PDF


Equilibrium Points; Functional Response; Holling Type IV; Predator-Prey System; Simulation; Stability.


Márquez-Vera, M. A., López-Ortega, O., Ramos-Velasco, L. E., Rodríguez-Romero, A., Ramos-Fernández, J. C., & Hernández-Salazar, J. A. (2021). Adaptive threshold PCA for fault detection and isolation. Journal of Robotics and Control, 2(3), 119–125. doi:10.18196/jrc.2364.

Lin, Z., Cui, C., & Wu, G. (2021). Dynamic modeling and torque feedforward based optimal fuzzy PD control of a high-speed parallel manipulator. Journal of Robotics and Control (JRC), 2(6), 527–538. doi:10.18196/jrc.26133.

Purwono, P., Ma’arif, A., Mangku Negara, I. S., Rahmaniar, W., & Rahmawan, J. (2021). Linkage Detection of Features that Cause Stroke using Feyn Qlattice Machine Learning Model. Jurnal Ilmiah Teknik Elektro Komputer Dan Informatika, 7(3), 423. doi:10.26555/jiteki.v7i3.22237.

Mukherjee, D. (2020). Role of fear in predator–prey system with intraspecific competition. Mathematics and Computers in Simulation, 177, 263–275. doi:10.1016/j.matcom.2020.04.025.

Panday, P., Samanta, S., Pal, N., & Chattopadhyay, J. (2020). Delay induced multiple stability switch and chaos in a predator–prey model with fear effect. Mathematics and Computers in Simulation, 172, 134–158. doi:10.1016/j.matcom.2019.12.015.

Sasmal, S. K., & Takeuchi, Y. (2020). Dynamics of a predator-prey system with fear and group defense. Journal of Mathematical Analysis and Applications, 481(1). doi:10.1016/j.jmaa.2019.123471.

Sasmal, S. K., Kang, Y., & Chattopadhyay, J. (2015). Intra-specific competition in predator can promote the coexistence of an eco-epidemiological model with strong Allee effects in prey. BioSystems, 137, 34–44. doi:10.1016/j.biosystems.2015.09.003.

Vinoth, S., Sivasamy, R., Sathiyanathan, K., Unyong, B., Rajchakit, G., Vadivel, R., & Gunasekaran, N. (2021). The dynamics of a Leslie type predator–prey model with fear and Allee effect. Advances in Difference Equations, 2021(1). doi:10.1186/s13662-021-03490-x.

Xu, J., Zhang, T., & Han, M. (2019). A regime switching model for species subject to environmental noises and additive Allee effect. Physica A: Statistical Mechanics and Its Applications, 527. doi:10.1016/j.physa.2019.121300.

Ang, T. K., & Safuan, H. M. (2019). Harvesting in a toxicated intraguild predator–prey fishery model with variable carrying capacity. Chaos, Solitons and Fractals, 126, 158–168. doi:10.1016/j.chaos.2019.06.004.

Wang, J. S., Wu, Y. P., Li, L., & Sun, G. Q. (2020). Effect of mobility and predator switching on the dynamical behavior of a predator-prey model. Chaos, Solitons and Fractals, 132. doi:10.1016/j.chaos.2019.109584.

Fakhry, N. H., & Naji, R. K. (2020). The dynamics of a square root prey-predator model with fear. Iraqi Journal of Science, 61(1), 139–146. doi:10.24996/ijs.2020.61.1.15.

Liu, J., Lv, P., Liu, B., & Zhang, T. (2021). Dynamics of a Predator-Prey Model with Fear Effect and Time Delay. Complexity, 2021, 1–16. doi:10.1155/2021/9184193.

Mondal, S., & Samanta, G. P. (2019). Dynamics of an additional food provided predator–prey system with prey refuge dependent on both species and constant harvest in predator. Physica A: Statistical Mechanics and Its Applications, 534. doi:10.1016/j.physa.2019.122301.

Halder, S., Bhattacharyya, J., & Pal, S. (2022). Predator-prey interactions under fear effect and multiple foraging strategies. Discrete and Continuous Dynamical Systems - B, 27(7), 3779. doi:10.3934/dcdsb.2021206.

Bajeux, N., & Ghosh, B. (2020). Stability switching and hydra effect in a predator–prey metapopulation model. BioSystems, 198. doi:10.1016/j.biosystems.2020.104255.

Pal, S., Pal, N., Samanta, S., & Chattopadhyay, J. (2019). Effect of hunting cooperation and fear in a predator-prey model. Ecological Complexity, 39. doi:10.1016/j.ecocom.2019.100770.

Tiwari, V., Tripathi, J.P., Mishra, S., & Upadhyay, R. K. (2020). Modeling the fear effect and stability of non-equilibrium patterns in mutually interfering predator–prey systems. Applied Mathematics and Computation, 371. doi:10.1016/j.amc.2019.124948.

Dubey, B., Sajan, & Kumar, A. (2021). Stability switching and chaos in a multiple delayed prey–predator model with fear effect and anti-predator behavior. Mathematics and Computers in Simulation, 188, 164–192. doi:10.1016/j.matcom.2021.03.037.

Lehtinen, S. O. (2021). Ecological and evolutionary consequences of predator-prey role reversal: Allee effect and catastrophic predator extinction. Journal of Theoretical Biology, 510. doi:10.1016/j.jtbi.2020.110542.

Huang, Y., Zhu, Z., & Li, Z. (2020). Modeling the Allee effect and fear effect in predator–prey system incorporating a prey refuge. Advances in Difference Equations, 2020(1). doi:10.1186/s13662-020-02727-5.

Roy, J., Barman, D., & Alam, S. (2020). Role of fear in a predator-prey system with ratio-dependent functional response in deterministic and stochastic environment. BioSystems, 197. doi:10.1016/j.biosystems.2020.104176.

Qi, H., & Meng, X. (2021). Threshold behavior of a stochastic predator–prey system with prey refuge and fear effect. Applied Mathematics Letters, 113. doi:10.1016/j.aml.2020.106846.

Mishra, P., & Tiwari, B. (2021). Drivers of pattern formation in a predator–prey model with defense in fearful prey. Nonlinear Dynamics, 105(3), 2811–2838. doi:10.1007/s11071-021-06719-2.

Mukherjee, D. (2020). Study of fear mechanism in predator-prey system in the presence of competitor for the prey. Ecological Genetics and Genomics, 15. doi:10.1016/j.egg.2020.100052.

Yousef, F. B., Yousef, A., & Maji, C. (2021). Effects of fear in a fractional-order predator-prey system with predator density-dependent prey mortality. Chaos, Solitons and Fractals, 145. doi:10.1016/j.chaos.2021.110711.

Banerjee, R., Das, P., & Mukherjee, D. (2022). Effects of Fear and Anti-Predator Response in a Discrete System with Delay. Discrete and Continuous Dynamical Systems - Series B, 27(7), 3643–3661. doi:10.3934/dcdsb.2021200.

Fardell, L. L., Pavey, C. R., & Dickman, C. R. (2020). Fear and stressing in predator–prey ecology: Considering the twin stressors of predators and people on mammals. PeerJ, 8. doi:10.7717/PEERJ.9104.

Mondal, S., Samanta, G. P., & Nieto, J. J. (2021). Dynamics of a Predator-Prey Population in the Presence of Resource Subsidy under the Influence of Nonlinear Prey Refuge and Fear Effect. Complexity, 2021. doi:10.1155/2021/9963031.

Datta, J., Jana, D., & Upadhyay, R. K. (2019). Bifurcation and bio-economic analysis of a prey-generalist predator model with Holling type IV functional response and nonlinear age-selective prey harvesting. Chaos, Solitons and Fractals, 122, 229–235. doi:10.1016/j.chaos.2019.02.010.

Alsakaji, H. J., Kundu, S., & Rihan, F. A. (2021). Delay differential model of one-predator two-prey system with Monod-Haldane and holling type II functional responses. Applied Mathematics and Computation, 397. doi:10.1016/j.amc.2020.125919.

Liu, X., & Huang, Q. (2020). Analysis of optimal harvesting of a predator-prey model with Holling type IV functional response. Ecological Complexity, 42. doi:10.1016/j.ecocom.2020.100816.

Pratama, R. A., Toaha, S., & Kasbawati. (2019). Optimal harvesting and stability of predator prey model with Monod-Haldane predation response function and stage structure for predator. IOP Conference Series: Earth and Environmental Science, 279, 012015. doi:10.1088/1755-1315/279/1/012015.

Sarkar, K., & Khajanchi, S. (2020). Impact of fear effect on the growth of prey in a predator-prey interaction model. Ecological Complexity, 42. doi:10.1016/j.ecocom.2020.100826.

Full Text: PDF

DOI: 10.28991/ESJ-2023-07-02-06


  • There are currently no refbacks.

Copyright (c) 2023 Hariyanto Hariyanto