Effect of Turbocharger Compression Ratio on Performance of the Spark-Ignition Internal Combustion Engine

Saad S. Alrwashdeh, Ala’a M. Al-falahat, Talib K. Murtadha


Internal Combustion Engines (ICE) are one of the most important engineering applications that operate based on the conversion of chemical energy from fuel into thermal energy as a result of direct combustion. The obtained thermal energy is then turned into kinetic energy to derive various means of transportation, such as marine, air, and land vehicles. The efficiency of ICE today is considered in the range of the intermediate level, and various improvements are being made to enhance its efficiency. The turbocharger can support the ICE, which works by increasing the pressure in the engine to enhance its efficiency. In this investigation, the effect of the turbocharger pressure on ICE performance was studied in the range of 2 to 10 bar. It was found that the increase in turbocharger pressure enhanced the pressure inside the engine, positively affecting engine efficiency indicators. Therefore, the increase in turbocharger pressure is directly proportional to the ICE efficiency.


Doi: 10.28991/ESJ-2022-06-03-04

Full Text: PDF


Internal Combustion Engines; Engine Performance; Turbocharger.


Al-Najideen, M. I., & Alrwashdeh, S. S. (2017). Design of a solar photovoltaic system to cover the electricity demand for the faculty of Engineering- Mu’tah University in Jordan. Resource-Efficient Technologies, 3(4), 440–445. doi:10.1016/j.reffit.2017.04.005.

Alrwashdeh, S. S. (2017). Determining the optimum tilt solar angle of a PV applications at different sites in Jordan. Journal of Engineering and Applied Sciences, 12(Specialissue11), 9295–9303. doi:10.3923/jeasci.2017.9295.9303.

Tur, M. R., Colak, I., & Bayindir, R. (2018). Effect of Faults in Solar Panels on Production Rate and Efficiency. 2018 International Conference on Smart Grid (icSmartGrid). doi:10.1109/isgwcp.2018.8634509.

Liu, T., Liu, Q., Lei, J., & Sui, J. (2019). A new solar hybrid clean fuel-fired distributed energy system with solar thermochemical conversion. Journal of Cleaner Production, 213, 1011–1023. doi:10.1016/j.jclepro.2018.12.193.

Alrwashdeh, S. S. (2018). The effect of solar tower height on its energy output at Ma’an-Jordan. AIMS Energy, 6(6), 959–966. doi:10.3934/ENERGY.2018.6.959.

Deshmukh, S. S., & Pearce, J. M. (2021). Electric vehicle charging potential from retail parking lot solar photovoltaic awnings. Renewable Energy, 169, 608–617. doi:10.1016/j.renene.2021.01.068.

Alrwashdeh, S. S. (2018). Modelling of operating conditions of conduction heat transfer mode using energy 2D simulation. International Journal of Online Engineering, 14(9), 200–207. doi:10.3991/ijoe.v14i09.9116.

Ghodbane, M., Boumeddane, B., Said, Z., & Bellos, E. (2019). A numerical simulation of a linear Fresnel solar reflector directed to produce steam for the power plant. Journal of Cleaner Production, 231, 494–508. doi:10.1016/j.jclepro.2019.05.201.

Alrwashdeh, S. S. (2019). Investigation of Wind Energy Production at Different Sites in Jordan Using the Site Effectiveness Method. Energy Engineering: Journal of the Association of Energy Engineering, 116(1), 47–59. doi:10.1080/01998595.2019.12043338.

Chiesi, M., Vanzolini, L., Franchi Scarselli, E., & Guerrieri, R. (2013). Accurate optical model for design and analysis of solar fields based on heterogeneous multicore systems. Renewable Energy, 55, 241–251. doi:10.1016/j.renene.2012.12.025.

Osmani, K., Haddad, A., Lemenand, T., Castanier, B., & Ramadan, M. (2020). A review on maintenance strategies for PV systems. Science of the Total Environment, 746, 141753. doi:10.1016/j.scitotenv.2020.141753.

Alrwashdeh, S. S. (2021). Investigation of the energy output from PV panels based on using different orientation systems in Amman-Jordan. Case Studies in Thermal Engineering, 28, 101580. doi:10.1016/j.csite.2021.101580.

Hrayshat, E. S. (2007). Analysis of renewable energy situation in Jordan. Renewable and Sustainable Energy Reviews, 11(8), 1873–1887. doi:10.1016/j.rser.2006.01.003.

Alrwashdeh, S. S., & Ammari, H. (2019). Life cycle cost analysis of two different refrigeration systems powered by solar energy. Case Studies in Thermal Engineering, 16. doi:10.1016/j.csite.2019.100559.

Alrwashdeh, S. S., Markötter, H., Haußmann, J., Arlt, T., Klages, M., Scholta, J., Banhart, J., & Manke, I. (2016). Investigation of water transport dynamics in polymer electrolyte membrane fuel cells based on high porous micro porous layers. Energy, 102, 161–165. doi:10.1016/j.energy.2016.02.075.

Alrwashdeh, S. S., Markötter, H., Haußmann, J., Scholta, J., Hilger, A., & Manke, I. (2016). X-ray Tomographic Investigation of Water Distribution in Polymer Electrolyte Membrane Fuel Cells with Different Gas Diffusion Media. ECS Transactions, 72(8), 99–106. doi:10.1149/07208.0099ecst.

Göbel, M., Kirsch, S., Schwarze, L., Schmidt, L., Scholz, H., Haußmann, J., Klages, M., Scholta, J., Markötter, H., Alrwashdeh, S., Manke, I., & Müller, B. R. (2018). Transient limiting current measurements for characterization of gas diffusion layers. Journal of Power Sources, 402, 237–245. doi:10.1016/j.jpowsour.2018.09.003.

Ince, U. U., Markötter, H., George, M. G., Liu, H., Ge, N., Lee, J., Alrwashdeh, S. S., Zeis, R., Messerschmidt, M., Scholta, J., Bazylak, A., & Manke, I. (2018). Effects of compression on water distribution in gas diffusion layer materials of PEMFC in a point injection device by means of synchrotron X-ray imaging. International Journal of Hydrogen Energy, 43(1), 391–406. doi:10.1016/j.ijhydene.2017.11.047.

Markötter, H., Manke, I., Böll, J., Alrwashdeh, S., Hilger, A., Klages, M., Haussmann, J., & Scholta, J. (2019). Morphology correction technique for tomographic in-situ and operando studies in energy research. Journal of Power Sources, 414, 8–12. doi:10.1016/j.jpowsour.2018.12.072.

Guermoui, M., Melgani, F., Gairaa, K., & Mekhalfi, M. L. (2020). A comprehensive review of hybrid models for solar radiation forecasting. Journal of Cleaner Production, 258, 120357. doi:10.1016/j.jclepro.2020.120357.

Davlatshoevich, N. D. (2021). Investigation Optical Properties of the Orthorhombic System CsSnBr3-xIx: Application for Solar Cells and Optoelectronic Devices. Journal of Human, Earth, and Future, 2(4), 404–411. doi:10.28991/hef-2021-02-04-08.

Alrwashdeh, S. S. (2018). Assessment of photovoltaic energy production at different locations in Jordan. International Journal of Renewable Energy Research, 8(2), 797–804.

Alrwashdeh, S. S., Ammari, H., Madanat, M. A., & Ala’a, M. (2022). The Effect of Heat Exchanger Design on Heat transfer Rate and Temperature Distribution. Emerging Science Journal, 6(1), 128-137. doi:10.28991/ESJ-2022-06-01-010.

Sabe'Alrwashdeh, S., Markötter, H., Haußmann, J., Scholta, J., Hilger, A., & Manke, I. (2016). X-ray tomographic investigation of water distribution in polymer electrolyte membrane fuel cells with different gas diffusion media. ECS Transactions, 72(8), 99. doi:10.1149/07208.0099ecst.

Ammari, H. D., Al-Rwashdeh, S. S., & Al-Najideen, M. I. (2015). Evaluation of wind energy potential and electricity generation at five locations in Jordan. Sustainable Cities and Society, 15, 135–143. doi:10.1016/j.scs.2014.11.005.

Gautam, S. S., Singh, R., Vibhuti, A. S., Sangwan, G., Mahanta, T. K., Gobinath, N., & Feroskhan, M. (2022). Thermal barrier coatings for internal combustion engines: A review. Materials Today: Proceedings, 51, 1554–1560. doi:10.1016/j.matpr.2021.10.371.

Sinigaglia, T., Eduardo Santos Martins, M., & Cezar Mairesse Siluk, J. (2022). Technological evolution of internal combustion engine vehicle: A patent data analysis. Applied Energy, 306, 118003. doi:10.1016/j.apenergy.2021.118003.

Catapano, F., Perozziello, C., & Vaglieco, B. M. (2021). Heat transfer of a Stirling engine for waste heat recovery application from internal combustion engines. Applied Thermal Engineering, 198, 117492. doi:10.1016/j.applthermaleng.2021.117492.

Guo, C., Zuo, Z., Feng, H., & Roskilly, T. (2021). Advances in free-piston internal combustion engines: A comprehensive review. Applied Thermal Engineering, 189, 116679. doi:10.1016/j.applthermaleng.2021.116679.

Gao, J., Wang, X., Song, P., Tian, G., & Ma, C. (2022). Review of the backfire occurrences and control strategies for port hydrogen injection internal combustion engines. Fuel, 307, 121553. doi:10.1016/j.fuel.2021.121553.

Aliramezani, M., Koch, C. R., & Shahbakhti, M. (2022). Modeling, diagnostics, optimization, and control of internal combustion engines via modern machine learning techniques: A review and future directions. Progress in Energy and Combustion Science, 88, 100967. doi:10.1016/j.pecs.2021.100967.

Cuenca, C. A., & Gonzaga-Bermeo, L. (2022). Structural design of the base of an internal combustion engine using FEM. Materials Today: Proceedings, 49, 135–141. doi:10.1016/j.matpr.2021.07.486.

Novotny, V., Spale, J., Szucs, D. J., Tsai, H. Y., & Kolovratnik, M. (2021). Direct integration of an organic Rankine cycle into an internal combustion engine cooling system for comprehensive and simplified waste heat recovery. Energy Reports, 7, 644–656. doi:10.1016/j.egyr.2021.07.088.

Omara, A. A. M. (2021). Phase change materials for waste heat recovery in internal combustion engines: A review. Journal of Energy Storage, 44, 103421. doi:10.1016/j.est.2021.103421.

Jafari, H., Yang, W., & Ryu, C. (2020). Evaluation of a distributed combustion concept using 1-D modeling for pressurized oxy-combustion system with low flue gas recirculation. Fuel, 263, 116723. doi:10.1016/j.fuel.2019.116723.

Negoro, A. B., & Purwadi, A. (2013). Performance Analysis on Power Train Drive System of the 2012 Toyota Camry Hybrid. Procedia Technology, 11, 1054–1064. doi:10.1016/j.protcy.2013.12.294.

Doppalapudi, A. T., Azad, A. K., & Khan, M. M. K. (2021). Combustion chamber modifications to improve diesel engine performance and reduce emissions: A review. Renewable and Sustainable Energy Reviews, 152, 111683. doi:10.1016/j.rser.2021.111683.

Mücková, P., Famfulík, J., & Richtár, M. (2021). Optimization of four stroke spark ignition engine for firesport. Transportation Research Procedia, 55, 496–502. doi:10.1016/j.trpro.2021.07.014.

Yousefi, A., Guo, H., Dev, S., Liko, B., & Lafrance, S. (2022). Effects of ammonia energy fraction and diesel injection timing on combustion and emissions of an ammonia/diesel dual-fuel engine. Fuel, 314, 122723. doi:10.1016/j.fuel.2021.122723.

Sykes, D., Turner, J., Stetsyuk, V., de Sercey, G., Gold, M., Pearson, R., & Crua, C. (2021). Quantitative characterisations of spray deposited liquid films and post-injection discharge on diesel injectors. Fuel, 289, 119833. doi:10.1016/j.fuel.2020.119833.

Alrwashdeh, S. S., Alsaraireh, F. M., Saraireh, M. A., Markötter, H., Kardjilov, N., Klages, M., Scholta, J., & Manke, I. (2018). In-situ investigation of water distribution in polymer electrolyte membrane fuel cells using high-resolution neutron tomography with 6.5 μm pixel size. AIMS Energy, 6(4), 607–614. doi:10.3934/energy.2018.4.607.

Zhang, T. (2022). An estimation method of the fuel mass injected in large injections in Common-Rail diesel engines based on system identification using artificial neural network. Fuel, 310, 122404. doi:10.1016/j.fuel.2021.122404.

Lan, Q., Bai, Y., Fan, L., Gu, Y., Wen, L., & Yang, L. (2020). Investigation on fuel injection quantity of low-speed diesel engine fuel system based on response surface prediction model. Energy, 211, 118946. doi:10.1016/j.energy.2020.118946.

Schifter, I., González-Macías, C., & Mejía-Centeno, I. (2022). Merit function for simultaneous optimization of fuel properties, naturally aspirated spark-ignition engines equipped with port fuel injection system, and regulated emissions. Fuel, 313, 122701. doi:10.1016/j.fuel.2021.122701.

Wang, D., Shi, L., Zhang, H., Li, X., Qian, Y., & Deng, K. (2022). Research on influence and demand of Miller cycle based on the coupling of marine low-speed engine and turbocharger. Applied Thermal Engineering, 200, 117624. doi:10.1016/j.applthermaleng.2021.117624.

Lu, D., Theotokatos, G., Zhang, J., Zeng, H., & Cui, K. (2022). Parametric investigation of a large marine two-stroke diesel engine equipped with exhaust gas recirculation and turbocharger cut out systems. Applied Thermal Engineering, 200, 117654. doi:10.1016/j.applthermaleng.2021.117654.

Jung, I. D. (2021). Process and design optimization for powder injection molding of turbocharger vanes. Metal Powder Report, 76(5), 26–29. doi:10.1016/S0026-0657(21)00285-X.

Peixoto, T. F., Nordmann, R., & Cavalca, K. L. (2021). Dynamic analysis of turbochargers with thermo-hydrodynamic lubrication bearings: Abstract. Journal of Sound and Vibration, 505, 116140. doi:10.1016/j.jsv.2021.116140.

Novotný, P., Vacula, J., & Hrabovský, J. (2021). Solution strategy for increasing the efficiency of turbochargers by reducing energy losses in the lubrication system. Energy, 236, 121402. doi:10.1016/j.energy.2021.121402.

Full Text: PDF

DOI: 10.28991/ESJ-2022-06-03-04


  • There are currently no refbacks.

Copyright (c) 2022 Saad Alrwashdeh