Bayesian Approaches for Poisson Distribution Parameter Estimation

Yadpirun Supharakonsakun


The Bayesian approach, a non-classical estimation technique, is very widely used in statistical inference for real world situations. The parameter is considered to be a random variable, and knowledge of the prior distribution is used to update the parameter estimation. Herein, two Bayesian approaches for Poisson parameter estimation by deriving the posterior distribution under the squared error loss or quadratic loss functions are proposed. Their performances were compared with frequentist (maximum likelihood estimator) and Empirical Bayes approaches through Monte Carlo simulations. The mean square error was used as the test criterion for comparing the methods for point estimation; the smallest value indicates the best performing method with the estimated parameter value closest to the true parameter value. Coverage Probabilities (CPs) and average lengths (ALs) were obtained to evaluate the performances of the methods for constructing confidence intervals. The results reveal that the Bayesian approaches were excellent for point estimation when the true parameter value was small (0.5, 1 and 2). In the credible interval comparison, these methods obtained CP values close to the nominal 0.95 confidence level and the smallest ALs for large sample sizes (50 and 100), when the true parameter value was small (0.5, 1 and 2).


Doi: 10.28991/esj-2021-01310

Full Text: PDF


Bayesian Method; Empirical Bayes Approach; Poisson Distribution; Maximum Likelihood Estimator; Monte Carlo Simulation.


Araveeporn, Autcha. "Parameter Estimation of Poisson Distribution by Using Maximum Likelihood, Markov Chain Monte Carlo, and Bayes method." Science & Technology Asia 19, no. 3 (2014): 1-14.

Hassan, Anwar, Peer Bilal Ahmad, and M. Ishaq Bhatti. “On the Bayes Estimator of Parameter and Reliability Function of the Zero-Truncated Poisson Distribution”. Journal of the Korea Society for Industrial and Applied Mathematics 12, no.2, (January 2008): 97-108.

Howlader, Hatem A., and Uditha Balasooriya. “Bayesian Estimation of the Distribution Function of the Poisson Model.” Biometrical Journal 45, no. 7 (October 2003): 901–912. doi:10.1002/bimj.200390057.

Takada, Yoshikazu. “Bayes Sequential Estimation of Poisson Mean Under A Linex Loss Function.” Sequential Analysis 20, no. 1–2 (May 31, 2001): 55–64. doi:10.1081/sqa-100102646.

Hwang, Leng-Cheng, and Cheng-Hung Lee. “Bayes Sequential Estimation for a Poisson Process Under a LINEX Loss Function.” Statistics 47, no. 4 (August 2013): 672–687. doi:10.1080/02331888.2011.648640.

Lee, Cheng-Hung, and Leng-Cheng Hwang. “Asymptotic Optimal Estimation of Poisson Mean under LINEX Loss Function.” Communications in Statistics - Theory and Methods 40, no. 23 (December 2011): 4308–4321. doi:10.1080/03610926.2010.510252.

Srivastava, Uma. “Bayesian Estimation of Shift Point in Poisson Model under Asymmetric Loss Functions.” Pakistan Journal of Statistics and Operation Research 8, no. 1 (January 3, 2012): 31. doi:10.18187/pjsor.v8i1.306.

Okasha, Hassan M., and Jianhua Wang. “E-Bayesian Estimation for the Geometric Model Based on Record Statistics.” Applied Mathematical Modelling 40, no. 1 (January 2016): 658–670. doi:10.1016/j.apm.2015.05.004.

Han, Ming. “E-Bayesian Estimation of the Reliability Derived from Binomial Distribution.” Applied Mathematical Modelling 35, no. 5 (May 2011): 2419–2424. doi:10.1016/j.apm.2010.11.051.

Han, Ming. “The E-Bayesian and Hierarchical Bayesian Estimations of Pareto Distribution Parameter under Different Loss Functions.” Journal of Statistical Computation and Simulation 87, no. 3 (August 18, 2016): 577–593. doi:10.1080/00949655.2016.1221408.

Han, Ming. “E-Bayesian Estimation of the Exponentiated Distribution Family Parameter under LINEX Loss Function.” Communications in Statistics - Theory and Methods 48, no. 3 (January 5, 2018): 648–659. doi:10.1080/03610926.2017.1417432.

Hassan, M.R. and A.R. Baizid. “Bayesian Estimation under different Loss Functions Using Gamma Prior for the Case of Exponential Distribution”. Journal of Scientific Research 9, no.1, (2016): 67-78.

Hassan, M.R. “A Bayesian Approach for Estimating the Scale Parameter of Double Exponential Distribution under Symmetric and Asymmetric Loss Functions”. International Journal of Science and Research 8, (March 2019): 351-356.

Naji, Loaiy F., and Huda A. Rasheed. “Bayesian Estimation for Two Parameters of Gamma Distribution Under Generalized Weighted Loss Function.” Iraqi Journal of Science 60, no. 5 (May 26, 2019): 1161–1171. doi:10.24996/ijs.2019.60.5.24.

Naji, Loaiy F., and Huda Abdullah Rasheed. “Bayesian Estimation for Two Parameters of Gamma Distribution under Precautionary Loss Function.” Ibn Al-Haitham Journal for Pure and Applied Science 32, no. 1 (February 10, 2019): 193. doi:10.30526/32.1.1914.

Naji, Loaiy F., and Huda A. Rasheed. "Estimate the Two Parameters of Gamma Distribution Under Entropy Loss Function." Iraqi Journal of Science (2019): 127-134.

Okasha, Hassan, and Abdelfattah Mustafa. “E-Bayesian Estimation for the Weibull Distribution Under Adaptive Type-I Progressive Hybrid Censored Competing Risks Data.” Entropy 22, no. 8 (August 17, 2020): 903. doi:10.3390/e22080903.

Basheer, Abdulkareem M., H. M. Okasha, A. H. El-Baz, and A. M. K. Tarabia. “E-Bayesian and Hierarchical Bayesian Estimations for the Inverse Weibull Distribution.” Annals of Data Science (January 9, 2021). doi:10.1007/s40745-020-00320-x.

Athirakrishnan, R. B., and E. I. Abdul-Sathar. “E-Bayesian and Hierarchical Bayesian Estimation of Inverse Rayleigh Distribution.” American Journal of Mathematical and Management Sciences (April 30, 2021): 1–22. doi:10.1080/01966324.2021.1914250.

Yosboonruang, Noppadon, Sa-aat Niwitpong, and Suparat Niwitpong. “Measuring the Dispersion of Rainfall Using Bayesian Confidence Intervals for Coefficient of Variation of Delta-Lognormal Distribution: a Study from Thailand.” PeerJ 7 (July 22, 2019): e7344. doi:10.7717/peerj.7344.

Maneerat, Patcharee, Sa-aat Niwitpong, and Suparat Niwitpong. “A Bayesian Approach to Construct Confidence Intervals for Comparing the Rainfall Dispersion in Thailand.” PeerJ 8 (February 11, 2020): e8502. doi:10.7717/peerj.8502.

Thangjai, Warisa, Sa-Aat Niwitpong, and Suparat Niwitpong. "Bayesian Confidence Intervals for Coefficients of Variation of PM10 Dispersion." Emerging Science Journal 5, no. 2 (April 2021): 139-154. doi:10.28991/esj-2021-01264.

Okasha, Hassan M. “E-Bayesian Estimation for the Lomax Distribution Based on Type-II Censored Data.” Journal of the Egyptian Mathematical Society 22, no. 3 (October 2014): 489–495. doi:10.1016/j.joems.2013.12.009.

Ijaz, M. “Bayesian Estimation of the Shape Parameter of Lomax Distribution under Uniform and Jeffery Prior with Engineering Applications”. Gazi University Journal of Science, 34 (2021): 562-577.

Yadav, Abhimanyu Singh, S. K. Singh, and Umesh Singh. “Bayesian estimation of R=P[Y

Robbins, Herbert. "The empirical Bayes approach to statistical decision problems." The Annals of Mathematical Statistics 35, no. 1 (March 1964): 1-20.

Yadpirun Supharakonsakun and Katechan Jampachasri. “The Comparison of Confidence Interval Estimation Methods for Parameter Using Empirical Bayes Methods in Poisson Distributed Data.” 11th Thai Conference on Statistics and Applied Statistics (May 2010).

Mohammed, Heba S. “Empirical E-Bayesian Estimation for the Parameter of Poisson Distribution.” AIMS Mathematics 6, no. 8 (May 2021): 8205–8220. doi:10.3934/math.2021475.

Li, C. and H. Hao. “E-Bayesian estimation and hierarchical Bayesian estimation of Poisson distribution parameter under entropy loss function”. International Journal of Applied Mathematics 49, (2019): 369–374.

Zhang, Ying-Ying, Ze-Yu Wang, Zheng-Min Duan, and Wen Mi. "The empirical Bayes estimators of the parameter of the Poisson distribution with a conjugate gamma prior under Stein's loss function." Journal of Statistical Computation and Simulation 89, no. 16 (2019): 3061-3074. doi:10.1080/00949655.2019.1652606.

Zhang, Ying-Ying, Teng-Zhong Rong, and Man-Man Li. “The Empirical Bayes Estimators of the Mean and Variance Parameters of the Normal Distribution with a Conjugate Normal-Inverse-Gamma Prior by the Moment Method and the MLE Method.” Communications in Statistics-Theory and Methods 48, no. 9 (Feb. 2019): 2286–2304. doi:10.1080/03610926.2018.1465081.

Full Text: PDF

DOI: 10.28991/esj-2021-01310


  • There are currently no refbacks.

Copyright (c) 2021 Yadpirun Supharakonsakun