Europe’s Energy Shift: From Fossil Fuels to Renewable Energy
Downloads
Objectives:This study explores the transformation of energy consumption in Europe between 2002 and 2022, focusing on the declining role of fossil fuels and the increasing significance of renewable and nuclear energy sources. The study also considers how countries with varying levels of economic development adopt different energy strategies and how these strategies correlate with shifts in energy usage. A circular economy approach that includes energy recovery from waste and resource reuse is a complementary aspect of sustainable energy transitions. Methods/Analysis: The per capita energy consumption data were analyzed through decile classification and cluster analysis to group countries with similar energy profiles. To explore the relationship between GDP and energy use—both total and renewable—linear and exponential regression models were applied. Outlier countries with atypical consumption trends were excluded to improve model reliability. Statistical analyses were conducted using SPSS, and Excel was used to support the visualization process. Findings: Six distinct clusters of energy consumption patterns emerged. In lower- and middle-GDP countries, renewable energy use showed a stronger exponential correlation with GDP growth than total energy use. While fossil fuel dependence has declined across most countries, the pathways taken have been diverse. High-GDP nations such as Iceland and Norway have demonstrated unique, resource-driven strategies. Novelty/Improvement: This study introduces a novel methodological blend of decile-based classification and clustering to enable clearer cross-country comparisons of energy use. The results also highlight the importance of excluding statistical outliers to improve regression precision. By integrating insights relevant to circular economy principles, the findings contribute to designing more effective and regionally adapted energy transition strategies.
Downloads
[1] E.E.A. (2022). Trends and projections: Limited growth in EU emissions amid post-pandemic recovery and energy crisis. European Environment Agency, Copenhagen, Denmark. Available online: https://www.eea.europa.eu/en/highlights/trends-and-projections-limited-growth (accessed on September 2025).
[2] European Parliament and Council. (2018). Amendment of Directive 2012/27/EU on energy efficiency. European Parliament and Council, Strasbourg, France. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32018L2002 (accessed on September 2025).
[3] Véliz, K. D., Busco, C., Walters, J. P., & Esparza, C. (2025). Circular Economy for Construction and Demolition Waste in the Santiago Metropolitan Region of Chile: A Delphi Analysis. Sustainability (Switzerland), 17(3), 1057. doi:10.3390/su17031057.
[4] Kröger, W., Sornette, D., & Ayoub, A. (2020). Towards Safer and More Sustainable Ways for Exploiting Nuclear Power. World Journal of Nuclear Science and Technology, 10(03), 91–115. doi:10.4236/wjnst.2020.103010.
[5] Rehm, T. E. (2023). Advanced nuclear energy: the safest and most renewable clean energy. Current Opinion in Chemical Engineering, 39. doi:10.1016/j.coche.2022.100878.
[6] Hoffacker, M. K., & Hernandez, R. R. (2020). Local Energy: Spatial Proximity of Energy Providers to Their Power Resources. Frontiers in Sustainability, 1, 585110. doi:10.3389/frsus.2020.585110.
[7] Caldés, N., Del Río, P., Lechón, Y., & Gerbeti, A. (2019). Renewable energy cooperation in Europe: What next? Drivers and barriers to the use of cooperation mechanisms. Energies, 12(1). doi:10.3390/en12010070.
[8] Malins, C. (2013). A model-based quantitative assessment of the carbon benefits of introducing iLUC factors in the European Renewable Energy Directive. GCB Bioenergy, 5(6), 639–651. doi:10.1111/j.1757-1707.2012.01207.x.
[9] Fingerman, K. R., Nabuurs, G. J., Iriarte, L., Fritsche, U. R., Staritsky, I., Visser, L., Mai-Moulin, T., & Junginger, M. (2019). Opportunities and risks for sustainable biomass export from the south-eastern United States to Europe. Biofuels, Bioproducts and Biorefining, 13(2), 281–292. doi:10.1002/bbb.1845.
[10] Selçuklu, S. B., Rodgers, M. D., & Movlyanov, A. (2022). Economically and environmentally sustainable long-term power system expansion. Computers and Industrial Engineering, 164. doi:10.1016/j.cie.2021.107892.
[11] Shah, M. A. H., & Ximei, W. (2024). Innovating for sustainability: exploring the synergy between international digital trade, appeal mechanisms, renewable energy, and economic growth on ecological footprint in BRICST economies. Environment, Development and Sustainability. doi:10.1007/s10668-024-05252-7.
[12] Gao, Q., Liu, J., & Elsworth, D. (2024). Phenomenal study of microbial impact on hydrogen storage in aquifers: A coupled multiphysics modelling. International Journal of Hydrogen Energy, 79, 883–900. doi:10.1016/j.ijhydene.2024.07.004.
[13] Ray, S., Aditya, I., & Pal, M. K. (2023). The influence of energy consumption, economic growth, industrialisation and corruption on carbon dioxide emissions: Evidence from selected Asian economies. In The Impact of Environmental Emissions and Aggregate Economic Activity on Industry: Theoretical and Empirical Perspectives (pp. 93–110). Emerald Publishing Ltd. doi:10.1108/978-1-80382-577-920231008.
[14] Nagaj, R., Gajdzik, B., Wolniak, R., & Grebski, W. W. (2024). The Impact of Deep Decarbonization Policy on the Level of Greenhouse Gas Emissions in the European Union. Energies, 17(5). doi:10.3390/en17051245.
[15] Atzler, F., Türck, J., Türck, R., & Krahl, J. (2023). The Energy Situation in the Federal Republic of Germany: Analysis of the Current Situation and Perspectives for a Non-Fossil Energy Supply. Energies, 16(12), 4569. doi:10.3390/en16124569.
[16] Adhikari, R., Niroula, B., & Singh, S. K. (2024). Navigating Nepal’s Economic Growth and Carbon Emissions: Insights into the Environmental Kuznets Curve (EKC). Nature Environment and Pollution Technology, 23(3), 1221–1238. doi:10.46488/NEPT.2024.v23i03.001.
[17] D’Orazio, P., & Dirks, M. W. (2022). Exploring the effects of climate-related financial policies on carbon emissions in G20 countries: a panel quantile regression approach. Environmental Science and Pollution Research, 29(5), 7678–7702. doi:10.1007/s11356-021-15655-y.
[18] Liu, Y., Xie, X., & Wang, M. (2023). Energy structure and carbon emission: Analysis against the background of the current energy crisis in the EU. Energy, 280. doi:10.1016/j.energy.2023.128129.
[19] Udemba, E. N., & Tosun, M. (2022). Moderating effect of institutional policies on energy and technology towards a better environment quality: A two dimensional approach to China’s sustainable development. Technological Forecasting and Social Change, 183. doi:10.1016/j.techfore.2022.121964.
[20] Loáiciga, H. (2011). Challenges to phasing out fossil fuels as the major source of the world’s energy. Energy and Environment, 22(6), 659–679. doi:10.1260/0958-305X.22.6.659.
[21] Rahmat, A. F., Bujdosó, Z., & Dávid, L. D. (2024). “What is going on in global goals projects, is agenda filled?” Highlighting circular economy literature within sustainable development goals–review-based. Discover Sustainability, 5(1), 399. doi:10.1007/s43621-024-00621-8.
[22] Kabil, M., Rahmat, A. F., Hegedüs, M., Galovics, B., & Dávid, L. D. (2024). Circular Economy and Tourism: A Bibliometric Journey Through Scholarly Discourse. Circular Economy, 2(1), 1-21. doi:10.55845/hgwo7144.
[23] Bai, T., Xu, D., Yang, Q., Piroska, V. D., Dávid, L. D., & Zhu, K. (2023). Paths to low-carbon development in China: The role of government environmental target constraints. Oeconomia Copernicana, 14(4), 1139–1173. doi:10.24136/oc.2023.034.
[24] IRP. (2025). Global Material Flows Database. International Resource Panel (IRP), Paris, France. Available online: https://www.resourcepanel.org/global-material-flows-database (accessed on September 2025).
[25] Wurster, S., & Hagemann, C. (2020). Expansion of Renewable Energy in Federal Settings: Austria, Belgium, and Germany in Comparison. Journal of Environment and Development, 29(1), 147–168. doi:10.1177/1070496519887488.
[26] Faninger, G. (2003). Towards sustainable development in austria: Renewable energy contributions. Mitigation and Adaptation Strategies for Global Change, 8(2), 177–188. doi:10.1023/A:1026010514567.
[27] Geissler, S., Arevalo-Arizaga, A., Radlbauer, D., & Wallisch, P. (2022). Linking the National Energy and Climate Plan with Municipal Spatial Planning and Supporting Sustainable Investment in Renewable Energy Sources in Austria. Energies, 15(2), 645. doi:10.3390/en15020645.
[28] Lawford, H. L. (2023). Wind of Change: Discourse Collisions and Coalitions in the Fosen Vind Case. Master Thesis, The University of Bergen, Bergen, Norway.
[29] Hansen, S. T., & Moe, E. (2022). Renewable energy expansion or the preservation of national energy sovereignty? Norwegian renewable energy policy meets resource nationalism. Political Geography, 99. doi:10.1016/j.polgeo.2022.102760.
[30] Charmasson, J., Belsnes, M., Andersen, O., Eloranta, A., Graabak, I., Korpås, M., Palm Helland, I., Sundt, H., & Wolfgang, O. (2018). HydroBalance Roadmap for large-scale balancing and energy storage from Norwegian Hydropower. Centre for Environmental Design of Renewable Energy (CEDREN), Trondheim, Norway.
[31] Azevedo dos Santos Silva, F. (2023). Energy Transition in Norway, Sweden, and Portugal: Reconciling Conflicts Between Climate and Environmental Objectives in the context of Hydropower Production. Master thesis, UiT Norges arktiske universitet, Tromsø, Norway.
[32] Bucur, I., Axinte, P., Plescan, C., & Şerban, A. (2021). Renewable energy sources potential evaluation in Romania. IOP Conference Series: Materials Science and Engineering, 1138(1), 012007. doi:10.1088/1757-899x/1138/1/012007.
[33] Paraschiv, L. S., & Paraschiv, S. (2023). Contribution of renewable energy (hydro, wind, solar and biomass) to decarbonization and transformation of the electricity generation sector for sustainable development. Energy Reports, 9(Suppl. 9), 535–544. doi:10.1016/j.egyr.2023.07.024.
[34] Ciupageanu, D. A., Lazaroiu, G., & Mihaescu, L. (2021). Structure of the Energy Produced from Renewable Sources. Innovative Renewable Waste Conversion Technologies. Springer, Cham, Switzerland. doi;10.1007/978-3-030-81431-1_1.
[35] Pisică, A., Davidescu, A. A., AgafiȚei, M.-D., BolboaȘă, M.-B., & Gheorghe, M. (2024). Transition Trajectory: VAR Projections of Romania’s Shift to Renewable Energy. Journal of Social and Economic Statistics, 13(1). doi:10.2478/jses-2024-0004.
[36] Chitu, F., Andra-Nicoleta, M., & Ionela, M. G. (2024). Romania - An Integrated Part of the European Energy Transition Process. 24th International Multidisciplinary Scientific GeoConference Proceedings SGEM 2024, Ecology, Economics, Education and Legislation, 24(5.1), 607–614. doi:10.5593/sgem2024/5.1/s21.75.
[37] Kunsch, P. L., & Friesewinkel, J. (2014). Nuclear energy policy in Belgium after Fukushima. Energy Policy, 66, 462–474. doi:10.1016/j.enpol.2013.11.035.
[38] Ernst, D. (2021). Elements of concern regarding a total nuclear phase-out in 2025 in Belgium. Chamber of Representatives, Brussels, Belgium. Available online: https://orbi.uliege.be/bitstream/2268/265408/1/Chamber-Representatives-Talk-Ernst.pdf (accessed on September 2025).
[39] Laleman, R., & Albrecht, J. (2016). Belgian blackout? Estimations of the reserve margin during the nuclear phase-out. International Journal of Electrical Power & Energy Systems, 81, 416–426. doi:10.1016/j.ijepes.2016.02.048.
[40] Hyvönen, J., Koivunen, T., & Syri, S. (2023). Possible bottlenecks in clean energy transitions: Overview and modelled effects – Case Finland. Journal of Cleaner Production, 410, 137317. doi:10.1016/j.jclepro.2023.137317.
[41] Wang, H., Di Pietro, G., Wu, X., Lahdelma, R., Verda, V., & Haavisto, I. (2018). Renewable and Sustainable Energy Transitions for Countries with Different Climates and Renewable Energy Sources Potentials. Energies, 11(12), 3523. doi:10.3390/en11123523.
[42] Pilpola, S., & Lund, P. D. (2018). Effect of major policy disruptions in energy system transition: Case Finland. Energy Policy, 116, 323–336. doi:10.1016/j.enpol.2018.02.028.
[43] Sivonen, M. H., & Kivimaa, P. (2023). Politics in the energy-security nexus: an epistemic governance approach to the zero-carbon energy transition in Finland, Estonia, and Norway. Environmental Sociology, 10(1), 55–72. doi:10.1080/23251042.2023.2251873.
[44] Azzarina Azhari, A. R., Batrisyia Shukry, P. B., Zamrus, K. S., & Abdul Rani, M. H. (2025). Legislating Sustainability for Renewable Energy in Malaysia and Iceland. International Journal of Research and Innovation in Social Science, VIII(XII), 4587–4597. doi:10.47772/ijriss.2024.8120385.
[45] Tverijonaite, E., & Sæþórsdóttir, A. D. (2024). Hydro, Wind, and Geothermal: Navigating the Compatibility of Renewable Energy Infrastructure with Tourism. Tourism and Hospitality, 5(1), 16–31. doi:10.3390/tourhosp5010002.
[46] Benediktsson, K. (2021). Conflicting imaginaries in the energy transition? Nature and renewable energy in Iceland. Moravian Geographical Reports, 29(2), 88–100. doi:10.2478/mgr-2021-0008.
[47] Spittler, N., Davidsdottir, B., Shafiei, E., Leaver, J., Asgeirsson, E. I., & Stefansson, H. (2020). The role of geothermal resources in sustainable power system planning in Iceland. Renewable Energy, 153, 1081–1090. doi:10.1016/j.renene.2020.02.046.
[48] Kauw, M., Benders, R. M. J., & Visser, C. (2015). Green methanol from hydrogen and carbon dioxide using geothermal energy and/or hydropower in Iceland or excess renewable electricity in Germany. Energy, 90(1), 208-217. doi:10.1016/j.energy.2015.06.002.
[49] Baranowski, M. (2024). Forces of energy welfare in Central Europe: The Russian war in Ukraine as a game changer. Hungarian Geographical Bulletin, 73(1), 89–101. doi:10.15201/hungeobull.73.1.6.
[50] Jones, G. A., & Warner, K. J. (2016). The 21st century population-energy-climate nexus. Energy Policy, 93, 206–212. doi:10.1016/j.enpol.2016.02.044.
[51] Geels, F. W., Sovacool, B. K., Schwanen, T., & Sorrell, S. (2017). The Socio-Technical Dynamics of Low-Carbon Transitions. Joule, 1(3), 463–479. doi:10.1016/j.joule.2017.09.018.
[52] Kappner, K., Letmathe, P., & Weidinger, P. (2023). Causes and effects of the German energy transition in the context of environmental, societal, political, technological, and economic developments. Energy, Sustainability and Society, 13(1). doi:10.1186/s13705-023-00407-2.
[53] Gajdzik, B., Nagaj, R., Wolniak, R., Bałaga, D., Žuromskaitė, B., & Grebski, W. W. (2024). Renewable Energy Share in European Industry: Analysis and Extrapolation of Trends in EU Countries. Energies , 17(11), 2476. doi:10.3390/en17112476.
[54] Akram, R., Chen, F., Khalid, F., Ye, Z., & Majeed, M. T. (2020). Heterogeneous effects of energy efficiency and renewable energy on carbon emissions: Evidence from developing countries. Journal of Cleaner Production, 247, 119122. doi:10.1016/j.jclepro.2019.119122.
[55] Martins, F., Felgueiras, C., Smitkova, M., & Caetano, N. (2019). Analysis of fossil fuel energy consumption and environmental impacts in european countries. Energies, 12(6), 10 3390 12060964. doi:10.3390/en12060964.
[56] Kosowski, P., Kosowska, K., & Janiga, D. (2023). Primary Energy Consumption Patterns in Selected European Countries from 1990 to 2021: A Cluster Analysis Approach. Energies, 16(19), 9641. doi:10.3390/en16196941.
[57] Radtke, J., & Renn, O. (2024). Participation in Energy Transitions: A Comparison of Policy Styles. Energy Research and Social Science, 118. doi:10.1016/j.erss.2024.103743.
[58] Wang, Q., Wang, X., & Li, R. (2024). Geopolitical risks and energy transition: the impact of environmental regulation and green innovation. Humanities and Social Sciences Communications, 11(1), 1-22. doi:10.1057/s41599-024-03770-3.
[59] Williges, K., Van der Gaast, W., de Bruyn-Szendrei, K., Tuerk, A., & Bachner, G. (2022). The potential for successful climate policy in National Energy and climate plans: highlighting key gaps and ways forward. Sustainable Earth, 5(1), 1. doi:10.1186/s42055-022-00046-z.
[60] Dincă, V. M., Moagăr-Poladian, S., Stamule, T., & Nistoreanu, P. (2023). The Repowereu Plan and the Main Challenges for the Transition to Renewable Energy in Romania. Amfiteatru Economic, 25(64), 676-690.
[61] Bacsi, Z., & Hollósy, Z. (2019). The yield stability index reloaded - The assessment of the stability of crop production technology. Agriculturae Conspectus Scientificus, 84(4), 319–331.
[62] Dadkhah, M., Oermann, M. H., Raman, R., & Dávid, L. D. (2023). A serious threat to publishing ethics and research integrity: Citations to hijacked journals. Equilibrium. Quarterly Journal of Economics and Economic Policy, 18(4), 897–906. doi:10.24136/eq.2023.028.
[63] European Commission (2025). 2050 Long-term Strategy. European Commission, Brussels, Belgium. Available online: https://climate.ec.europa.eu/eu-action/climate-strategies-targets/2050-long-term-strategy_en (accessed on September 2025).
[64] European Commission (2025). Clean Industrial Deal. European Commission, Brussels, Belgium. Available online: https://commission.europa.eu/topics/eu-competitiveness/clean-industrial-deal_en (accessed on September 2025).
[65] Rastegar, H., Eweje, G., & Sajjad, A. (2024). The impact of environmental policy on renewable energy innovation: A systematic literature review and research directions. Sustainable Development, 32(4), 3859–3876. doi:10.1002/sd.2884.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.



















