Time-Varying Impacts of Robust Determinants on Greenhouse Gas Emissions: Panel Data Evidence
Downloads
Understanding the key drivers of greenhouse gas (GHG) emissions is crucial for designing effective and adaptable climate policies, particularly given the complex interplay among structural, institutional, and energy-related factors. This study examines the time-varying impacts of key determinants of GHG emissions across 29 countries from 1993 to 2018, with an emphasis on the shadow economy, energy security risks, and geopolitical volatility. The analysis follows a four-step framework: countries are classified using principal component analysis (PCA) and K-means clustering, robust covariates are selected via Bayesian Model Averaging (BMA), and their impacts are estimated with time-varying coefficient panel models. Model robustness is evaluated through grouped cross-validation, confirming the superior performance of the time-varying random effects (tvRE) specification. The results reveal that the shadow economy and energy security risk exert more dynamic and substantial impacts in the Higher-income group, while their effects are comparatively muted in the Lower-income group. Geopolitical risk, however, shows limited explanatory power for emissions in both contexts. This study provides a novel empirical framework for capturing the dynamic influences of emissions drivers and contributes actionable insights toward achieving sustainable development goals.
Downloads
[1] Grubb, M., Hourcade, J. C., & Neuhoff, K. (2014). Planetary economics: energy, climate change and the three domains of sustainable development, Routledge, London, United Kingdom.
[2] IPCC. (2023). AR6 Synthesis Report: Climate Change 2023; Intergovernmental Panel on Climate Change: Geneva, Switzerland.
[3] Ehrlich, P. R., & Holdren, J. P. (1971). Impact of population growth. Science, 171(3977), 1212–1217. doi:10.1126/science.171.3977.1212.
[4] Le, T. H. (2021). Drivers of greenhouse gas emissions in ASEAN + 6 countries: a new look. Environment, Development and Sustainability, 23(12), 18096–18115. doi:10.1007/s10668-021-01429-6.
[5] Sudarmaji, E., Rubiul Yatim, M., Harsono, H., Masrio, H., & Azizah, W. (2024). Quantifying Drivers of GHG Emissions in ASEAN: Modeling CO2 Emissions Using LMDI and ARIMAX Approaches. International Journal of Energy Economics and Policy, 14(6), 426–435. doi:10.32479/ijeep.17186.
[6] Yamaka, W., Phadkantha, R., & Rakpho, P. (2021). Economic and energy impacts on greenhouse gas emissions: A case study of China and the USA. Energy Reports, 7, 240–247. doi:10.1016/j.egyr.2021.06.040.
[7] Le, T. H., & Nguyen, C. P. (2024). Determinants of Greenhouse Gas Emissions Revisited: a Global Perspective. Singapore Economic Review, 69(1), 141–167. doi:10.1142/S0217590820500514.
[8] Sakariyahu, R., Lawal, R., Etudaiye-Muhtar, O. F., & Ajide, F. M. (2023). Reflections on COP27: How do technological innovations and economic freedom affect environmental quality in Africa? Technological Forecasting and Social Change, 195, 122782. doi:10.1016/j.techfore.2023.122782.
[9] Gawrońska, D., & Mularczyk, A. (2025). Analysis of Greenhouse Gas Emissions Drivers in Poland and the EU: Correlation and Regression-Based Assessment. Sustainability (Switzerland), 17(10), 4345. doi:10.3390/su17104345.
[10] Bauer, F., & Sterner, M. (2025). Impacts of lifestyle changes on energy demand and greenhouse gas emissions in Germany. Renewable and Sustainable Energy Reviews, 207, 114944. doi:10.1016/j.rser.2024.114944.
[11] Lin, T. Y., Chiu, Y. ho, Chen, C. H., & Ji, L. (2025). Renewable energy consumption efficiency, greenhouse gas emission efficiency, and climate change in Europe. Geoenergy Science and Engineering, 247, 213665. doi:10.1016/j.geoen.2025.213665.
[12] Tsur, Y. (2025). The diverse impacts of democracy on greenhouse gas emissions. Ecological Economics, 227, 108411. doi:10.1016/j.ecolecon.2024.108411.
[13] Opoku, E. E. O., Dogah, K. E., & Aluko, O. A. (2022). The contribution of human development towards environmental sustainability. Energy Economics, 106, 105782. doi:10.1016/j.eneco.2021.105782.
[14] Gharleghi, B., & Jahanshahi, A. A. (2020). The shadow economy and sustainable development: The role of financial development. Journal of Public Affairs, 20(3), 2099. doi:10.1002/pa.2099.
[15] Gomis-Porqueras, P., Peralta-Alva, A., & Waller, C. (2014). The shadow economy as an equilibrium outcome. Journal of Economic Dynamics and Control, 41, 1–19. doi:10.1016/j.jedc.2014.02.006.
[16] Medina, L., & Schneider, F. (2018). Shadow Economies Around the World: What Did We Learn Over the Last 20 Years? In International Monetary Fund, IMF Working Papers, 2018(17), 1-76. doi:10.5089/9781484338636.001.
[17] Elgin, C., Kose, M. A., Ohnsorge, F., & Yu, S. (2021). Understanding informality. C.E.P.R. Discussion Paper 16497. Centre for Economic Policy Research, London, United Kingdom.
[18] Ahmad, W., & Hussain, B. (2024). Shadow Economy and Environmental Pollution Nexus in Developing Countries: What is the Role of Corruption? International Economic Journal, 38(2), 293–311. doi:10.1080/10168737.2024.2331463.
[19] Biswas, A. K., Farzanegan, M. R., & Thum, M. (2012). Pollution, shadow economy and corruption: Theory and evidence. Ecological Economics, 75, 114–125. doi:10.1016/j.ecolecon.2012.01.007.
[20] Canh, N. P., Thanh, S. D., Schinckus, C., Bensemann, J., & Thanh, L. T. (2019). Global emissions: A new contribution from the shadow economy. International Journal of Energy Economics and Policy, 9(3), 320–337. doi:10.32479/ijeep.7244.
[21] Butt, S., FAISAL, F., Chohan, M. A., Ali, A., & Ramakrishnan, S. (2024). Do Shadow Economy and Institutions Lessen the Environmental Pollution? Evidence from Panel of ASEAN-9 Economies. Journal of the Knowledge Economy, 15(1), 4800–4828. doi:10.1007/s13132-023-01217-9.
[22] Lobont, O. R., Doran, N. M., Vatavu, S., Barbulescu, M. A., Costea, F., & Badareu, G. (2025). The Dark Side of Growth: Are Shadow Economies Undermining the Global Climate Goal? Sustainability (Switzerland), 17(12), 5241. doi:10.3390/su17125241.
[23] Dhifaoui, Z., Ncibi, K., Gasmi, F., & Alqarni, A. A. (2023). The Nexus between Climate Change and Geopolitical Risk Index in Saudi Arabia Based on the Fourier-Domain Transfer Entropy Spectrum Method. Sustainability (Switzerland), 15(18), 13579. doi:10.3390/su151813579.
[24] Goldthau, A. C., & Youngs, R. (2023). The EU Energy Crisis and a New Geopolitics of Climate Transition. Journal of Common Market Studies, 61(S1), 115–124. doi:10.1111/jcms.13539.
[25] Cevik, S. (2024). Climate change and energy security: the dilemma or opportunity of the century? Environmental Economics and Policy Studies, 26(3), 653–672. doi:10.1007/s10018-023-00391-z.
[26] Brown, S. P. A., & Huntington, H. G. (2008). Energy security and climate change protection: Complementarity or tradeoff? Energy Policy, 36(9), 3510–3513. doi:10.1016/j.enpol.2008.05.027.
[27] Iyke, B. N. (2024). Climate change, energy security risk, and clean energy investment. Energy Economics, 129, 107225. doi:10.1016/j.eneco.2023.107225.
[28] Borozan, D., & Pirgaip, B. (2025). Does uncertainty in climate policy play a role in shaping renewable energy use? Evidence from the USA. Environment, Development and Sustainability, 27(1), 2259–2284. doi:10.1007/s10668-023-03965-9.
[29] Bollen, J., Hers, S., & van der Zwaan, B. (2010). An integrated assessment of climate change, air pollution, and energy security policy. Energy Policy, 38(8), 4021–4030. doi:10.1016/j.enpol.2010.03.026.
[30] Wu, G., Liu, L. C., Han, Z. Y., & Wei, Y. M. (2012). Climate protection and China’s energy security: Win-win or tradeoff. Applied Energy, 97, 157–163. doi:10.1016/j.apenergy.2011.11.061.
[31] Wang, K. H., Kan, J. M., Jiang, C. F., & Su, C. W. (2022). Is Geopolitical Risk Powerful Enough to Affect Carbon Dioxide Emissions? Evidence from China. Sustainability (Switzerland), 14(13), 7867. doi:10.3390/su14137867.
[32] Hafner, M., & Tagliapietra, S. (2020). The geopolitics of the global energy transition. Springer Nature, Cham, Switzerland. doi:10.1007/978-3-030-39066-2.
[33] Acheampong, A. O., Opoku, E. E. O., & Aluko, O. A. (2023). The roadmap to net-zero emission: Do geopolitical risk and energy transition matter?. Journal of Public Affairs, 23(4), e2882. doi:10.1002/pa.2924.
[34] Anser, M. K., Syed, Q. R., & Apergis, N. (2021). Does geopolitical risk escalate CO2 emissions? Evidence from the BRICS countries. Environmental Science and Pollution Research, 28(35), 48011–48021. doi:10.1007/s11356-021-14032-z.
[35] Feng, Y., Pan, Y., Lu, S., & Shi, J. (2024). Identifying the multiple nexus between geopolitical risk, energy resilience, and carbon emissions: Evidence from global data. Technological Forecasting and Social Change, 208, 123661. doi:10.1016/j.techfore.2024.123661.
[36] Hoffart, F. M., D’Orazio, P., Holz, F., & Kemfert, C. (2024). Exploring the interdependence of climate, finance, energy, and geopolitics: A conceptual framework for systemic risks amidst multiple crises. Applied Energy, 361, 122885. doi:10.1016/j.apenergy.2024.122885.
[37] Huang, Y., Wu, H., & Chen, X. (2024). The asymmetric and dynamic effects of oil price shocks and geopolitical risks on carbon prices in China. Applied Economics, 1–19. doi:10.1080/00036846.2024.2423900.
[38] Cai, Y., & Wu, Y. (2021). Time-varying interactions between geopolitical risks and renewable energy consumption. International Review of Economics and Finance, 74, 116–137. doi:10.1016/j.iref.2021.02.006.
[39] Ding, S., Wang, K., Cui, T., & Du, M. (2023). The time-varying impact of geopolitical risk on natural resource prices: The post-COVID era evidence. Resources Policy, 86, 104161. doi:10.1016/j.resourpol.2023.104161.
[40] Ahmed, N., Xinagyu, G., Alnafissa, M., Ali, A., & Ullah, H. (2025). Linear and non-linear impact of key agricultural components on greenhouse gas emissions. Scientific Reports, 15(1), 5314. doi:10.1038/s41598-025-88159-1.
[41] Guermazi, I., Smaoui, A., & Chabchoub, M. (2025). Analysis of factors mitigating greenhouse gas emissions (GHG) in Saudi Arabia. Society and Business Review, 20(3), 470–487. doi:10.1108/SBR-09-2024-0313.
[42] Chu, L. K., Doğan, B., Ghosh, S., & Shahbaz, M. (2023). The influence of shadow economy, environmental policies and geopolitical risk on renewable energy: A comparison of high- and middle-income countries. Journal of Environmental Management, 342, 118122. doi:10.1016/j.jenvman.2023.118122.
[43] Gravina, A. F., & Lanzafame, M. (2025). ‘What’s your shape?’ A data-driven approach to estimating the Environmental Kuznets Curve. Energy Economics, 148(731), 108649. doi:10.1016/j.eneco.2025.108649.
[44] Li, Q. (2025). Revisiting the determinants of CO2 emissions: The role of higher education under the extended STIRPAT model. PLoS ONE, 20(3 March), 319930. doi:10.1371/journal.pone.0319930.
[45] Dietz, T., & Rosa, E. A. (1994). Rethinking the environmental impacts of population. Human Ecology Review, 1(2), 277–300.
[46] Dietz, T., & Rosa, E. A. (1997). Effects of population and affluence on CO2 emissions. Proceedings of the National Academy of Sciences of the United States of America, 94(1), 175–179. doi:10.1073/pnas.94.1.175.
[47] Martínez-Zarzoso, I., & Maruotti, A. (2011). The impact of urbanization on CO2 emissions: Evidence from developing countries. Ecological Economics, 70(7), 1344–1353. doi:10.1016/j.ecolecon.2011.02.009.
[48] York, R., Rosa, E. A., & Dietz, T. (2003). STIRPAT, IPAT and ImPACT: Analytic tools for unpacking the driving forces of environmental impacts. Ecological Economics, 46(3), 351–365. doi:10.1016/S0921-8009(03)00188-5.
[49] Grossman, G. M., & Krueger, A. B. (1995). Economic growth and the environment. Quarterly Journal of Economics, 110(2), 353–377. doi:10.2307/2118443.
[50] Lau, L. S., Yii, K. J., Ng, C. F., Tan, Y. L., & Yiew, T. H. (2025). Environmental Kuznets curve (EKC) hypothesis: A bibliometric review of the last three decades. Energy and Environment, 36(1), 93–131. doi:10.1177/0958305X231177734.
[51] Mutascu, M. (2025). Beyond the EKC: Economic development and environmental degradation in the US. Ecological Economics, 232, 108567. doi:10.1016/j.ecolecon.2025.108567.
[52] Zhao, L., Zhong, W., & Jin, Y. (2025). Using Regression Model to Fit EKC Curve to Analyze the Sustainable Development of Environment and Economy. International Journal of Knowledge Management, 21(1), 1–15. doi:10.4018/IJKM.366584.
[53] Caldara, D., & Iacoviell, M. (2022). Measuring Geopolitical Risk. American Economic Review, 112(4), 1194–1225. doi:10.1257/aer.20191823.
[54] Koop, G., & Tole, L. (2013). Forecasting the European carbon market. Journal of the Royal Statistical Society. Series A: Statistics in Society, 176(3), 723–741. doi:10.1111/j.1467-985X.2012.01060.x.
[55] Raftery, A. E., Madigan, D., & Hoeting, J. A. (1997). Bayesian Model Averaging for Linear Regression Models. Journal of the American Statistical Association, 92(437), 179–191. doi:10.1080/01621459.1997.10473615.
[56] Sammut, C., Webb, G.I. (2017). Bayesian Model Averaging. Encyclopedia of Machine Learning and Data Mining, Springer, Boston, United States. doi:10.1007/978-1-4899-7687-1_100038.
[57] Prempeh, K. B. (2025). Do renewable energy and fiscal policy impede or promote carbon emissions in Ghana? Empirical evidence from Bayesian and quantile-on-quantile regression approaches. Cogent Economics and Finance, 13(1), 2507133. doi:10.1080/23322039.2025.2507133.
[58] Zeugner, S., & Feldkircher, M. (2015). Bayesian model averaging employing fixed and flexible priors: The BMS package for R. Journal of Statistical Software, 68, 1–37. doi:10.18637/jss.v068.i04.
[59] Scott, J. G., & Berger, J. O. (2010). Bayes and empirical-Bayes multiplicity adjustment in the variable-selection problem. Annals of Statistics, 38(5), 2587–2619. doi:10.1214/10-AOS792.
[60] Mikayilov, J. I., Hasanov, F. J., & Galeotti, M. (2018). Decoupling of CO2 emissions and GDP: A time-varying cointegration approach. Ecological Indicators, 95, 615–628. doi:10.1016/j.ecolind.2018.07.051.
[61] Hastie, T., & Tibshirani, R. (1993). Varying-Coefficient Models. Journal of the Royal Statistical Society Series B: Statistical Methodology, 55(4), 757–779. doi:10.1111/j.2517-6161.1993.tb01939.x.
[62] Casas, I., & Fernandez-Casal, R. (2019). tvReg: Time-varying Coefficient Linear Regression for Single and Multi-Equations in R. SSRN Electronic Journal, 1-43. doi:10.2139/ssrn.3363526.
[63] Sun, Y., Carroll, R. J., & Li, D. (2009). Semiparametric estimation of fixed-effects panel data varying coefficient models. Nonparametric econometric methods, 101-129. doi:10.1108/S0731-9053(2009)0000024006.
[64] Seraj, A., Mohammadi-Khanaposhtani, M., Daneshfar, R., Naseri, M., Esmaeili, M., Baghban, A., Habibzadeh, S., & Eslamian, S. (2022). Cross-validation. Handbook of HydroInformatics: Volume I: Classic Soft-Computing Techniques, 89–105. doi:10.1016/B978-0-12-821285-1.00021-X.
[65] Stone, M. (1974). Cross-Validatory Choice and Assessment of Statistical Predictions. Journal of the Royal Statistical Society Series B: Statistical Methodology, 36(2), 111–133. doi:10.1111/j.2517-6161.1974.tb00994.x.
[66] Zhang, X., & Liu, C. A. (2023). Model averaging prediction by K-fold cross-validation. Journal of Econometrics, 235(1), 280–301. doi:10.1016/j.jeconom.2022.04.007.
[67] Keevers, T. L. (2019). Cross-validation is insufficient for model validation. Joint and Operations Analysis Division, Defence Science and Technology Group: Victoria, Australia.
[68] Wang, Q., Li, Y., & Li, R. (2024). Rethinking the environmental Kuznets curve hypothesis across 214 countries: the impacts of 12 economic, institutional, technological, resource, and social factors. Humanities and Social Sciences Communications, 11(1), 292. doi:10.1057/s41599-024-02736-9.
[69] Wang, Y., & Cao, J. (2023). Examining the Effects of Socioeconomic Development on Fine Particulate Matter (PM2.5) in China’s Cities Based on Spatial Autocorrelation Analysis and MGWR Model. International Journal of Environmental Research and Public Health, 20(4), 2814. doi:10.3390/ijerph20042814.
[70] Alola, A. A., Yalçiner, K., Alola, U. V., & Akadiri, S. Saint. (2019). The role of renewable energy, immigration and real income in environmental sustainability target. Evidence from Europe largest states. Science of the Total Environment, 674, 307–315. doi:10.1016/j.scitotenv.2019.04.163.
[71] Guan, D., Meng, J., Reiner, D. M., Zhang, N., Shan, Y., Mi, Z., Shao, S., Liu, Z., Zhang, Q., & Davis, S. J. (2018). Structural decline in China’s CO2 emissions through transitions in industry and energy systems. Nature Geoscience, 11(8), 551–555. doi:10.1038/s41561-018-0161-1.
[72] Hassan, S. T., Xia, E., Khan, N. H., & Shah, S. M. A. (2019). Economic growth, natural resources, and ecological footprints: evidence from Pakistan. Environmental Science and Pollution Research, 26(3), 2929–2938. doi:10.1007/s11356-018-3803-3.
[73] Alam, M. M., Murad, M. W., Noman, A. H. M., & Ozturk, I. (2016). Relationships among carbon emissions, economic growth, energy consumption and population growth: Testing Environmental Kuznets Curve hypothesis for Brazil, China, India and Indonesia. Ecological Indicators, 70, 466–479. doi:10.1016/j.ecolind.2016.06.043.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.



















