Cognitive and Affective Analysis in Water Education and Literacy Through Educational Robotics in Elementary School
Downloads
The aim of this study was to examine the impact of Educational Robotics on the cognitive and affective development of primary school students in the context of water education and literacy, with a specific focus on learning the water cycle and healthy hydration habits. A quasi-experimental design with a mixed-methods approach was adopted, involving a sample of 158 students (83 girls and 75 boys). The educational intervention consisted of 12 sessions incorporating interactive activities supported by robotics, and data were collected through pre- and post-intervention questionnaires. The findings revealed significant improvements in scientific knowledge, with students reaching an Excellent level in understanding the water cycle and a Sufficient level in hydration-related content. From an affective perspective, positive emotions such as Joy and Enjoyment (81.82%) were predominant, especially in relation to methodological and content aspects, whereas negative emotions were primarily linked to challenges in teamwork and oral communication. The novelty of this study lies in highlighting the value of Educational Robotics not merely as a motivational tool but as a meaningful technological support for learning scientific content. These results emphasize the importance of further research into Educational Robotics potential and the need to address affective barriers to optimize learning outcomes.
Downloads
[1] Flores Mejía, J. G., Velázquez Gatica, B., & Bernal Vargas, M. G. (2024). Divulgación científica en Educación Primaria: aplicación e innovación más allá del aula. Revista Eureka Sobre Enseñanza Y Divulgación De Las Ciencias, 21(3), 3207. doi:10.25267/Rev_Eureka_ensen_divulg_cienc.2024.v21.i3.3207. (in Spanish).
[2] Cuevas Romo, A., Hernández Sampieri, R., Leal Pérez, B. E., & Mendoza Torres, C. P. (2016). Enseñanza-aprendizaje de ciencia e investigación en educación básica en México. Revista Electrónica de Investigación Educativa, 18(3), 187–200. (in Spanish).
[3] Imaduddin, M., & Eilks, I. (2024). A scoping review and bibliometric analysis of educational research on water literacy and water education. Sustainable Chemistry and Pharmacy, 42, 101833. doi:10.1016/j.scp.2024.101833.
[4] Levy, A. R., & Mensah, F. M. (2021). Learning through the experience of water in elementary school science. Water (Switzerland), 13(1), 43. doi:10.3390/w13010043.
[5] Sadler, T. D., Nguyen, H., & Lankford, D. (2017). Water systems understandings: a framework for designing instruction and considering what learners know about water. Wiley Interdisciplinary Reviews: Water, 4(1), 1178. doi:10.1002/WAT2.1178.
[6] Cubero-Juánez, J., Sánchez-Herrera, S., Vallejo, J. R., Luengo, L., Calderón, M., & Bermejo-García, M. L. (2018). Aprendizaje cooperativo para la formación universitaria en alfabetización en salud. Revista de La Fundación Educación Médica, 21(2), 97. doi:10.33588/fem.212.938.
[7] Franco-Reynolds, L., De la Hoz Serrano, A., Valles Rapp, C., Benavente Sanguino, M. J., Sánchez Herrera, S., & Cubero Juánez, J. (2022). Efecto sobre el hábito de la dieta mediterránea de una intervención cooperativa en estudiantes universitarios TT. Rev. Esp. Nutr. Comunitaria, 28(4), 1–10. (in Spanish).
[8] Steven, A., Wilson, G., & Young-Murphy, L. (2019). The implementation of an innovative hydration monitoring app in care home settings: A qualitative study. JMIR MHealth and UHealth, 7(1), 9892. doi:10.2196/mhealth.9892.
[9] Gil, C. G. (2018). Objetivos de Desarrollo Sostenible (ODS): una revisión crítica. Papeles de relaciones ecosociales y caodsmbio global, (140), 107-118 (in Spanish).
[10] Rüegg, S. R., McMahon, B. J., Häsler, B., Esposito, R., Nielsen, L. R., Speranza, C. I., Ehlinger, T., Peyre, M., Aragrande, M., Zinsstag, J., Davies, P., Mihalca, A. D., Buttigieg, S. C., Rushton, J., Carmo, L. P., Meneghi, D. De, Canali, M., Filippitzi, M. E., Goutard, F. L., … Lindberg, A. (2017). A blueprint to evaluate one health. Frontiers in Public Health, 5(20). doi:10.3389/fpubh.2017.00020.
[11] Fuente-Ballesteros, A. (2023). Encuentros con ciencia: taller de experiencias en el laboratorio para aumentar el nivel de cultura científica en educación primaria. Faraday. Boletin de Física y Química (Segunda Época), 39(39), 11–15. (in Spanish).
[12] Angeli, C., & Valanides, N. (2020). Developing young children’s computational thinking with educational robotics: An interaction effect between gender and scaffolding strategy. Computers in Human Behavior, 105, 105954. doi:10.1016/j.chb.2019.03.018.
[13] Bers, M. U., Flannery, L., Kazakoff, E. R., & Sullivan, A. (2014). Computational thinking and tinkering: Exploration of an early childhood robotics curriculum. Computers and Education, 72, 145–157. doi:10.1016/j.compedu.2013.10.020.
[14] del Olmo-Muñoz, J., Cózar-Gutiérrez, R., & González-Calero, J. A. (2020). Computational thinking through unplugged activities in early years of Primary Education. Computers and Education, 150. doi:10.1016/j.compedu.2020.103832.
[15] You, H. S., Chacko, S. M., & Kapila, V. (2021). Examining the Effectiveness of a Professional Development Program: Integration of Educational Robotics into Science and Mathematics Curricula. Journal of Science Education and Technology, 30(4), 567–581. doi:10.1007/s10956-021-09903-6.
[16] Atmatzidou, S., & Demetriadis, S. (2016). Advancing students’ computational thinking skills through educational robotics: A study on age and gender relevant differences. Robotics and Autonomous Systems, 75, 661–670. doi:10.1016/j.robot.2015.10.008.
[17] Ching, Y. H., & Hsu, Y. C. (2024). Educational Robotics for Developing Computational Thinking in Young Learners: A Systematic Review. TechTrends, 68(3), 423–434. doi:10.1007/s11528-023-00841-1.
[18] Gaudiello, I. & Zibetti, E. (2016). Learning robotics, with robotics, by robotics: Educational robotics. John Wiley & Sons.
[19] Ziaeefard, S., Miller, M. H., Rastgaar, M., & Mahmoudian, N. (2017). Co-robotics hands-on activities: A gateway to engineering design and STEM learning. Robotics and Autonomous Systems, 97, 40–50. doi:10.1016/j.robot.2017.07.013.
[20] Sánchez, M. E., Gutiérrez, R. C., & Somoza, J. A. G. C. (2019). Robótica en la enseñanza de conocimiento e interacción con el entorno. Una investigación formativa en Educación Infantil. RIFOP: Revista interuniversitaria de formación del profesorado, 33(94), 11-28. (in Spanish).
[21] Marcos-Pablos, S., & García-Peñalvo, F. J. (2022). More than surgical tools: a systematic review of robots as didactic tools for the education of professionals in health sciences. Advances in Health Sciences Education, 27(4), 1139–1176. doi:10.1007/s10459-022-10118-6.
[22] Mellado, V., Borrachero, A. B., Brígido, M., Melo, L. V., Dávila, M. A., Cañada, F., Conde, M. C., Costillo, E., Cubero, J., Esteban, R., Martínez, G., Ruiz, C., Sánchez, J., Garritz, A., Mellado, L., Vázquez, B., Jiménez, R., & Bermejo, M. L. (2014). Emotions in science teaching. Ensenanza de Las Ciencias, 32(3), 11–36. doi:10.5565/rev/ensciencias.1478. (in Spanish).
[23] Del Rosal Sánchez, I., Dávila Acedo, M. A., & Cañada Cañada, F. (2022). Análisis de las emociones en estudiantes de Educación Primaria al abordar contenidos sobre “El ser humano y la salud.” Ápice. Revista de Educación Científica, 6(1), 57–73. doi:10.17979/arec.2022.6.1.8656. (in Spanish).
[24] Mora, F. (2021). Neuroeducación: Solo se Aprende Aquello que se ama; Alianza Editorial: Madrid, Spain, 2021; ISBN-10 841362522X, ISBN-13 978-8413625225. (in Spanish).
[25] Bravo, E., Costillo, E., Bravo, J. L., Mellado, V., & Conde, M. del C. (2022). Analysis of prospective early childhood education teachers’ proposals of nature field trips: An educational experience to bring nature close during this stage. Science Education, 106(1), 172–198. doi:10.1002/sce.21689.
[26] Dávila-Acedo, M. A., Sánchez-Martín, J., Airado-Rodríguez, D., & Cañada-Cañada, F. (2022). Impact of an Active Learning Methodology on Students’ Emotions and Self-Efficacy Beliefs towards the Learning of Chemical Reactions—The Case of Secondary Education Students. Education Sciences, 12(5). doi:10.3390/educsci12050347.
[27] Hernández del Barco, M. (2023). Estudio longitudinal del rendimiento afectivo y cognitivo en la formación científica de docentes [Tesis de doctorado, Universidad de Extremadura]. Repositorio institucional-Universidad de Extremadura. Available online: https://dehesa.unex.es/handle/10662/17550 (accessed on December 2025).
[28] Romero, Y. N., Adúriz-Bravo, A., Tuay Sigua, R. N., & Pérez Mesa, M. R. (2024). La investigación sobre las emociones en la didáctica de las ciencias experimentales: momentos clave de consolidación. Revista Eureka sobre Enseñanza y Divulgación de las Ciencias, 21(3). doi:10.25267/Rev_Eureka_ensen_divulg_cienc.2024.v21.i3.3301. (in Spanish).
[29] Vázquez-Alonso, Â., & Manassero-Mas, M. A. (2011). El descenso de las actitudes hacia la ciencia de chicos y chicas en la educación obligatoria. Ciência & Educação (Bauru), 17(2), 249–268. doi:10.1590/s1516-73132011000200001. (in Spanish).
[30] Yllana-Prieto, F., González-Gómez, D., & Jeong, J. S. (2023). Teaching Scientific Content through a Methodology Based on Escape Room. Ensenanza de Las Ciencias, 41(3), 69–88. doi:10.5565/rev/ensciencias.5873.
[31] Bravo Lucas, E., Brígido Mero, M., Hernández Del Barco, M. A., & Mellado Jiménez, V. (2022). Emotions in science during the initial training of Early Childhood and Primary Education teachers. Revista Interuniversitaria de Formacion Del Profesorado, 97(36.1), 57–74. doi:10.47553/rifop.v97i36.1.92426.
[32] Çoban, G. Ü., Akpinar, E., Küçükcankurtaran, E., Yildiz, E., & Ergin, Ö. (2011). Elementary school students’ water awareness. International Research in Geographical and Environmental Education, 20(1), 65–83. doi:10.1080/10382046.2011.540103.
[33] Covitt, B., Gunckel, K., & Anderson, C. (2009). Students’ developing understanding of water in environmental systems. Journal of Environmental Education, 40(3), 37–51. doi:10.3200/JOEE.40.3.37-51.
[34] Arthur, B., Roberts, D., Rae, B., Marrison, M., McCleary, H., Abbott, A., & Musso, B. (2021). Ocean Outreach in Australia: How a National Research Facility is Engaging with Community to Improve Scientific Literacy. Frontiers in Environmental Science, 9, 610115. doi:10.3389/fenvs.2021.610115.
[35] Boyd, M., & Scott, G. W. (2022). An expert-led outdoor activity can have a lasting impact on the environmental knowledge of participating pupils and adults. Education 3-13, 50(5), 696–706. doi:10.1080/03004279.2021.1899261.
[36] Owens, D. C., Petitt, D. N., Lally, D., & Forbes, C. T. (2020). Cultivating water literacy in stem education: Undergraduates’ socio-scientific reasoning about socio-hydrologic issues. Water (Switzerland), 12(10), 2857. doi:10.3390/w12102857.
[37] Mostacedo-Marasovic, S. J., Mott, B. C., White, H., & Forbes, C. T. (2023). Towards water literacy: Analysis of standards for teaching and learning about water on Earth. Journal of Geoscience Education, 71(2), 192–207. doi:10.1080/10899995.2022.2112490.
[38] Reyero, C., Calvo, M., Vidal, M. P., García, E. G., & Gabriel, J. (2007). Las ilustraciones del ciclo del agua en los textos de Educación Primaria. Enseñanza de Las Ciencias de La Tierra, 15(3), 287–294. (in Spanish).
[39] Ben-zvi-Assarf, O., & Orion, N. (2005). A study of junior high students’ perceptions of the water cycle. Journal of Geoscience Education, 53(4), 366–373. doi:10.5408/1089-9995-53.4.366.
[40] Hernández, M. J. (2014). ¿Qué debería conocer todo ciudadano sobre el agua? Alambique: Didáctica de Las Ciencias Experimentales, 77, 9–16. (in Spanish).
[41] Ramírez-Segado, A., Rodríguez-Serrano, M., & Benarroch, A. B. (2020). Water in educative literature during the last two decades. A systematic review. Revista Eureka, 18(1). doi:10.25267/REV_EUREKA_ENSEN_DIVULG_CIENC.2021.V18.I1.1107. (in Spanish).
[42] Romine, W. L., Schaffer, D. L., & Barrow, L. (2015). Development and Application of a Novel Rasch-based Methodology for Evaluating Multi-Tiered Assessment Instruments: Validation and utilization of an undergraduate diagnostic test of the water cycle. International Journal of Science Education, 37(16), 2740–2768. doi:10.1080/09500693.2015.1105398.
[43] EFSA Panel on Dietetic Products, Nutrition, and Allergies (NDA) (2010). Scientific Opinion on Dietary Reference Values for fats, including saturated fatty acids, polyunsaturated fatty acids, monounsaturated fatty acids, trans fatty acids, and cholesterol. EFSA Journal, 8(3), 1461. doi:10.2903/j.efsa.2010.1461.
[44] Salas-Salvadó, J., Maraver, F., Rodríguez-Mañas, L., de Pipaon, M. S., Vitoria, I., & Moreno, L. A. (2020). The importance of water consumption in health and disease prevention: the current situation. Nutricion Hospitalaria, 37(5), 1072–1086. doi:10.20960/nh.03160.
[45] Benelam, B., & Wyness, L. (2010). Hydration and health: A review. Nutrition Bulletin, 35(1), 3–25. doi:10.1111/j.1467-3010.2009.01795.x.
[46] Chen, S. H., Huang, Y. P., & Shao, J. H. (2017). Effects of a dietary self-management programme for community-dwelling older adults: a quasi-experimental design. Scandinavian Journal of Caring Sciences, 31(3), 619–629. doi:10.1111/scs.12375.
[47] McCarroll, M., & Hamann, H. (2020). What we know about water: A water literacy review. Water (Switzerland), 12(10), 2803. doi:10.3390/w12102803.
[48] Hernández-Rabanal, C., Vall, A., & Boter, C. (2017). Training, the key to improving eHealth literacy of upper secondary school students. Gaceta Sanitaria, 32(1), 48-53. doi:10.1016/j.gaceta.2016.12.005.
[49] Mávita-Corral, C. J. (2018). Alfabetización en salud de una comunidad universitaria del noroeste de México en el año 2016. Investigación En Educación Médica, 7(25), 36–45. doi:10.1016/j.riem.2017.03.002. (in Spanish).
[50] Braslavsky, B. (2003). ¿Qué se entiende por alfabetización? Lectura y vida, Revista Latinoamericana de lectura, 24(2), 1-17. (in Spanish).
[51] George Reyes, C. E., & Avello-Martínez, R. (2021). Digital literacy in education. Systematic review of scientific production in Scopus. Revista de Educación a Distancia, 21(66). doi:10.6018/RED.444751.
[52] Fernando, D., Gualdrón, R., & Aldana, B. U. (2013). Alfabetización Digital en Salud: un Análisis del Constructo en la Escala “eHealth Literacy Scale _ eHeals” Traducida al Español. RevistaeSalud.Com, 9(36), 1698–7969. (in Spanish).
[53] Jaipal-Jamani, K., & Angeli, C. (2017). Effect of Robotics on Elementary Preservice Teachers’ Self-Efficacy, Science Learning, and Computational Thinking. Journal of Science Education and Technology, 26(2), 175–192. doi:10.1007/s10956-016-9663-z.
[54] Ouyang, F., & Xu, W. (2024). The effects of educational robotics in STEM education: a multilevel meta-analysis. International Journal of STEM Education, 11(1), 7. doi:10.1186/s40594-024-00469-4.
[55] Benitti, F. B. V. (2012). Exploring the educational potential of robotics in schools: A systematic review. Computers and Education, 58(3), 978–988. doi:10.1016/j.compedu.2011.10.006.
[56] Jaipal-Jamani, K. (2023). Preservice teachers’ science learning and self-efficacy to teach with robotics-based activities: Investigating a scaffolded and a self-guided approach. Frontiers in Education, 8, 979709. doi:10.3389/feduc.2023.979709.
[57] Sengupta, P., Kinnebrew, J. S., Basu, S., Biswas, G., & Clark, D. (2013). Integrating computational thinking with K-12 science education using agent-based computation: A theoretical framework. Education and Information Technologies, 18(2), 351–380. doi:10.1007/s10639-012-9240-x.
[58] Kyriazopoulos, I., Koutromanos, G., Voudouri, A., & Galani, A. (2022). Educational Robotics in Primary Education: A Systematic Literature Review. In C. Mehdi (Ed.), Research Anthology on Computational Thinking, Programming, and Robotics in the Classroom, 2, 782–806. doi:10.4018/978-1-6684-2411-7.ch034.
[59] Sáez-López, J. M., Sevillano-García, M. L., & Vazquez-Cano, E. (2019). The effect of programming on primary school students’ mathematical and scientific understanding: educational use of mBot. Educational Technology Research and Development, 67(6), 1405–1425. doi:10.1007/s11423-019-09648-5.
[60] Cakir, N. K., & Guven, G. (2019). Arduino-Assisted robotic and coding applications in science teaching: Pulsimeter activity in compliance with the 5E learning model. Science Activities, 56(2), 42–51. doi:10.1080/00368121.2019.1675574.
[61] Scaradozzi, D., Cesaretti, L., Screpanti, L., Costa, D., Zingaretti, S., & Valzano, M. (2019). Innovative Tools for Teaching Marine Robotics, IoT and Control Strategies Since the Primary School. In L. Daniela (Ed.), Smart Learning with Educational Robotics (pp. 199–227). Springer. doi:10.1007/978-3-030-19913-5_8.
[62] Bampasidis, G., Piperidis, D., Papakonstantinou, V. C., Stathopoulos, D., Troumpetari, C., & Poutos, P. (2021). Hydrobots, an Underwater Robotics STEM Project: Introduction of Engineering Design Process in Secondary Education. Advances in Engineering Education.
[63] Liu, L., Oh, H., Zhang, L., Fang, T., Huang, M., Hao, Y., Wang, J., Yao, C., & Ying, F. (2023). A study of children’s learning and play using an underwater robot construction kit. International Journal of Technology and Design Education, 33(2), 317–336. doi:10.1007/s10798-021-09720-3.
[64] Costa, D., Screpanti, L., & Scaradozzi, D. (2023). Disseminating STEM Subjects and Ocean Literacy through a Bioinspired Toolkit. Biomimetics, 8(2), 161. doi:10.3390/biomimetics8020161.
[65] De la Hoz, A., Melo, L., Álvarez, A., Cañada, F., & Cubero, J. (2023). The Promotion of Healthy Hydration Habits through Educational Robotics in University Students. Healthcare, 11(15), 2160. doi:10.3390/healthcare11152160.
[66] Damasio, A. R. (2010). Y el cerebro creo al hombre (p. 544).
[67] Sun, L., Hu, L., Yang, W., Zhou, D., & Wang, X. (2021). STEM learning attitude predicts computational thinking skills among primary school students. Journal of Computer Assisted Learning, 37(2), 346–358. doi:10.1111/jcal.12493.
[68] Selcuk, N. A., Kucuk, S., & Sisman, B. (2024). Does really educational robotics improve secondary school students’ course motivation, achievement and attitude? Education and Information Technologies, 29(17). doi:10.1007/s10639-024-12773-1.
[69] Creswell, J. W. A (2014). A Concise Introduction To Mixed Methods Research. In Barataria. Revista Castellano-Manchega de Ciencias Sociales (Issue 18). SAGE publications.
[70] World Medical Association (WMA). (2010). Declaration of Helsinki: Ethical principles for medical research involving human subjects. In Human Dignity and Human Cloning, 243–248. doi:10.1515/9783110208856.233.
[71] Sun, L., & Liu, J. (2024). A gender differential analysis of educational robots’ effects on primary teachers’ computational thinking: Mediating effect of programming attitudes. Education and Information Technologies, 29(15), 19753–19782. doi:10.1007/s10639-024-12655-6.
[72] Castelltort, A. (2015). Educar a favor d'una nova cultura ambiental de l'aigua. Universitat Autònoma de Barcelona. (in Spanish).
[73] Márquez, C., & Bach, J. (2007). Una propuesta de ańalisis de las representaciones de los alumnos sobre el ciclo del agua [A study for analysing the students’ representations on the water cycle]. Enseñanza de Las Ciencias de La Tierra, 15(3), 280–286. (in Spanish).
[74] Valle, M. G. (2017). El conocimiento del ciclo del agua en el segundo ciclo de Educación Primaria. Ikastorratza, e-Revista de didáctica, 18 : 20-44. (in Spanish).
[75] Verdugo, J., Solaz, J. & Sanjosé, V. (2019). Evaluación del Conocimiento Científico en Maestros en formación inicial: el caso de la comunidad Valenciana. Revista de Educación, 383, 133-162. (in Spanish).
[76] Bartrina, J. A., Arija Val, V., Maíz Aldalur, E., Martínez De Victoria Muñoz, E., Ortega Anta, R. M., Pérez-Rodrigo, C., Quiles Izquierdo, J., Rodríguez Martín, A., Román Viñas, B., Salvador I Castell, G., Tur Marí, J. A., Moreiras, G. V., & Majem, L. S. (2016). Guías alimentarias para la población española (SENC, diciembre 2016); la nueva pirámide de la alimentación saludable. Nutricion Hospitalaria, 33(8), 1–48. doi:10.20960/NH.827. (in Spanish).
[77] Martínez, J.R. and Iglesias, C. (2006). El libro blanco de la hidratación. Sociedad Española de Dietética y Ciencias de la Alimentación: Madrid, Spain. (in Spanish).
[78] Poulos, N. S., & Pasch, K. E. (2016). Socio-demographic differences in energy drink consumption and reasons for consumption among US college students. Health Education Journal, 75(3), 318–330. doi:10.1177/0017896915578299.
[79] Perales-García, A., Ortega, R. M., Urrialde, R., & López-Sobaler, A. M. (2018). Assessment of beverage consumption, dietary water intake and adequacy to the recommendations of a group of spanish schoolchildren from 7 to 12 years old. Nutricion Hospitalaria, 35(6), 1347–1355. doi:10.20960/nh.1995. (in Spanish).
[80] De la Hoz, A., Durán-Vinagre, M. A., Melo, L., Costillo, E., Luengo, R., & Cubero, J. (2021). Diseño de una página web para una formación innovadora de la alfabetización digital en salud. Congreso Internacional Alfabetización en Salud y Autocuidado. Evidencias que diseñan la práctica clínica, (28–29 April 2021), Bragança, Portugal.
[81] Taber, K. S. (2018). The Use of Cronbach’s Alpha When Developing and Reporting Research Instruments in Science Education. Research in Science Education, 48(6), 1273–1296. doi:10.1007/s11165-016-9602-2.
[82] De la Hoz Serrano, A., Sánchez, S., Vega, M. R., Sanguino, M. J. B., & Juánez, J. C. (2020). Análisis del hábito de hidratación y su conocimiento en una muestra escolares de 10-12 años en la provincia de Badajoz (España). Revista Española de Nutrición Comunitaria, 26(2), 2.
[83] Hernández del Barco, M. A., Cañada, F. C., Cordovilla Moreno, A. M., & Airado-Rodríguez, D. (2022). An approach to epistemic emotions in physics’ teaching-learning. The case of pre-service teachers. Heliyon, 8(11), 11444. doi:10.1016/j.heliyon.2022.e11444.
[84] Varela, T. V, & Sutton, L. H. (2021). La codificación y categorización en la teoría fundamentada, un método para el análisis de los datos cualitativos. Investigación En Educación Médica, 10(40), 97–104. (in Spanish).
[85] Ocaña, R. (2019). Descubriendo R-Commander, (3ª ed). Escuela Andaluza de Salud Pública (EASP), Andalucía, Spain. (in Spanish).
[86] Costa, A., Sánchez-Gómez, M., & Martín, M. (Eds.). (2020). La Práctca de la investgación cualitatva: ejemplifcación de estudios (2ª Edi), Ludomedia. (in Spanish).
[87] Bocconi, S., Chioccariello, A., Kampylis, P., Dagienė, V., Wastiau, P., Engelhardt, K., Earp, J., Horvath, M., Jasutė, E., Malagoli, C., Masiulionytė-Dagienė, V., & Stupurienė, G. (2022). State of play and practices from computing education Reviewing Computational Thinking in Compulsory Education. Publications Office of the European Union. Available online: https://bit.ly/4dHaoqE (accessed on December 2025).
[88] De la Hoz, A., Cubero, J., Melo, L., Durán-Vinagre, M. A., & Sánchez, S. (2021). Analysis of Digital Literacy in Health through Active University Teaching. International Journal of Environmental Research and Public Health, 18(12), 6674. doi:10.3390/ijerph18126674.
[89] Sujana, A., Rachmatin, D., & Panjaitan, R. L. (2019). Science and mathematics literacy of elementary school students related to water cycle. Journal of Physics: Conference Series, 1318(1). doi:10.1088/1742-6596/1318/1/012131.
[90] Oguta, S., Ojo, S., & Maake, B. (2025). Prototype Implementation of a Robotic Gamification Model for Climate Change Literacy for Green Innovation and Entrepreneurship with Social Robot Nao. International Journal of Computing Sciences Research, 9, 3491–3523. doi:10.25147/ijcsr.2017.001.1.230.
[91] Koray, A., & Duman, F. G. (2022). Subject-oriented educational robotics applications with Arduino in science teaching: digital dynamometer activity in accordance with 5E instractional model. Science Activities, 59(4), 168–179. doi:10.1080/00368121.2022.2093824.
[92] Koray, A., & Uzuncelebi, B. H. (2023). The Effect of Educational Robotics Applications on Students’ Academic Achievement and Problem-Solving Skills in Science Education. Journal of Education in Science, Environment and Health, 9(4), 317–329. doi:10.55549/jeseh.1381251.
[93] Ntourou, V., Kalogiannakis, M., & Psycharis, S. (2021). A Study of the Impact of Arduino and Visual Programming In Self-Efficacy, Motivation, Computational Thinking and 5th Grade Students’ Perceptions on Electricity. Eurasia Journal of Mathematics, Science and Technology Education, 17(5), 1–11. doi:10.29333/ejmste/10842.
[94] Li, S. R., & Chang, Y. J. (2024). Effectiveness of a nutrition education intervention using simulation videos and encouragement of parental involvement for elementary school students. Journal of Nutritional Science, 13, 35. doi:10.1017/jns.2024.41.
[95] Breil, C., & Lillich, M. (2024). Health literacy education of children in Austrian elementary schools. Health Education Research, 39(1), 29–39. doi:10.1093/her/cyad022.
[96] Öksüz, Y., & Güven Demır, E. (2019). Comparison of open ended questions and multiple choice tests in terms of psychometric features and student performance. Hacettepe Egitim Dergisi, 34(1), 259–282. doi:10.16986/HUJE.2018040550.
[97] Conde, M., Rodríguez-Sedano, F. J., Fernández-Llamas, C., Gonçalves, J., Lima, J., & García-Peñalvo, F. J. (2021). Fostering STEAM through challenge-based learning, robotics, and physical devices: A systematic mapping literature review. Computer Applications in Engineering Education, 29(1), 46–65. doi:10.1002/cae.22354.
[98] López-Belmonte, J., Segura-Robles, A., Moreno-Guerrero, A. J., & Parra-González, M. E. (2021). Robotics in education: A scientific mapping of the literature in web of science. Electronics (Switzerland), 10(3), 1–18. doi:10.3390/electronics10030291.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.




















