Stochastic Diffusive Modeling of CO₂ Emissions with Population and Energy Dynamics

Muhammad Shoaib Arif, Kamaleldin Abodayeh, Hisham M. Al-Khawar, Yasir Nawaz

Abstract


Climate change, primarily driven by CO2 emissions from energy and non-energy sectors, necessitates effective mitigation strategies. This study develops a stochastic diffusive model to capture the complex dynamics of CO2 concentration, human population growth, and energy production. The objectives are to enhance the predictive accuracy of existing models by incorporating diffusion effects and stochastic variability, offering insights for sustainable environmental policies. A novel numerical scheme, an extension of the Euler-Maruyama algorithm, is proposed to solve stochastic time-dependent partial differential equations governing the model. The scheme's consistency and stability are rigorously analyzed in the mean square sense. Findings reveal that increasing emission rate coefficients in energy and non-energy sectors exacerbates CO2 levels, emphasizing the need for stringent controls. The proposed scheme demonstrates superior accuracy to the non-standard finite difference method, establishing its efficacy in modeling complex environmental processes. This research contributes a robust computational tool to improve existing predictive models, aiding decision-making for long-term ecological sustainability. By addressing uncertainties in the environmental process, the work advances the understanding of interactions between population growth, energy production, and CO2 emissions, offering a significant improvement over the traditional modeling approach. The novelty lies in integrating stochastic dynamics with diffusion to better inform CO2reduction strategies.

 

Doi: 10.28991/ESJ-2025-09-01-012

Full Text: PDF


Keywords


Stochastic Diffusive Model; Consistency; Stability; Existence; CO₂ Emissions Reduction; Diffusion Processes; Environmental Uncertainty Population Dynamics.

References


Tian, Y., Sun, K., Chen, L., & Kasperski, A. (2010). Studies on the dynamics of a continuous bioprocess with impulsive state feedback control. Chemical Engineering Journal, 157(2–3), 558–567. doi:10.1016/j.cej.2010.01.002.

Yang, J., & Tang, G. (2019). Piecewise chemostat model with control strategy. Mathematics and Computers in Simulation, 156, 126–142. doi:10.1016/j.matcom.2018.07.004.

Pilling, M. J. (1989). Mathematical Models of Chemical Reactions. Theory and Applications of Deterministic and Stochastic Models. Journal of Photochemistry and Photobiology A: Chemistry, 49(3), 409–410. doi:10.1016/1010-6030(89)87138-2.

Zhao, Z., Zhang, X., & Chen, L. (2010). Nonlinear modelling of chemostat model with time delay and impulsive effect. Nonlinear Dynamics, 63(1–2), 95–104. doi:10.1007/s11071-010-9788-1.

Kilbas, A. A., Srivastava, H. M., & Trujillo, J. J. (2006). Theory and applications of fractional differential equations. Elsevier, Amsterdam, Netherlands.

Podlubny, I. (1999). Fractional differential equations, mathematics in science and engineering. Academic Press, Washington, United States.

Khan, N. A., Hameed, T., Khan, N. A., & Raja, M. A. Z. (2018). A heuristic optimization method of fractional convection reaction an application to diffusion process. Thermal Science, 22, S243–S252. doi:10.2298/TSCI170717292K.

Puliyanda, A., Srinivasan, K., Li, Z., & Prasad, V. (2023). Benchmarking chemical neural ordinary differential equations to obtain reaction network-constrained kinetic models from spectroscopic data. Engineering Applications of Artificial Intelligence, 125, 125 106690. doi:10.1016/j.engappai.2023.106690.

Rossikhin, Y. A., & Shitikova, M. V. (1997). Applications of fractional calculus to dynamic problems of linear and nonlinear hereditary mechanics of solids. Applied Mechanics Reviews, 50(1), 15–67. doi:10.1115/1.3101682.

Bao, L., Dai, C., Liu, C., Jia, Y., Liu, X., Ren, X., Ali, S., Bououdina, M., & Zeng, C. (2024). Fluorine lattice-doped ZnS with accompanying sulfur vacancies for high activity and selectivity of CO2 conversion to CO. Ceramics International, 50(11), 19769–19780. doi:10.1016/j.ceramint.2024.03.100.

Ali, S., Ismail, P. M., Humayun, M., Bououdina, M., & Qiao, L. (2024). Tailoring 2D metal-organic frameworks for enhanced CO2 reduction efficiency through modulating conjugated ligands. Fuel Processing Technology, 255, 108049. doi:10.1016/j.fuproc.2024.108049.

Liu, J., Liu, X., Dai, C., Zeng, C., Ali, S., Bououdina, M., & Jia, Y. (2024). Copper-doped Bi2MoO6 with concurrent oxygen vacancies for enhanced CO2 photoreduction. Inorganic Chemistry Frontiers, 11(22), 8003–8015. doi:10.1039/d4qi02005g.

BP International (2019). BP Statistical Review of World Energy 2019: an unsustainable path. BP International, London, United Kingdom. Available online: https://www.bp.com/en/global/corporate/news-and-insights/press-releases/bp-statistical-review-of-world-energy-2019.html (accessed on January 2025)

DOW/EIA-0484. (2013). International Energy Outlook 2013. U.S. Energy Information Administration, Office of Energy Analysis, U.S. Department of Energy, Washington, United States.

EPA. (2019). Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990-2017. U.S. Environmental Protection Agency, Washington, United States.

Zabel, G. (2009). Peak People: The Interrelationship between Population Growth and Energy Resources - Resilience. Energy Bulletin. Available online: https://www.resilience.org/stories/2009-04-20/peak-people-interrelationship-between-population-growth-and-energy-resources/ (accessed on January 2025).

Nikol’skii, M. S. (2010). A controlled model of carbon circulation between the atmosphere and the ocean. Computational Mathematics and Modeling, 21(4), 414–424. doi:10.1007/s10598-010-9081-7.

Emami, M. J., Tang, Y., Wang, Z., & Tontiwachwuthikul, P. (2023). Forecast energy demand, CO2 emissions and energy resource impacts for the transportation sector: – Multi-objective optimization, sensitivity analysis and Canada Case Study. Applied Energy, 338, 120830. doi:10.1016/j.apenergy.2023.120830.

Weng, Z., Song, Y., Ma, H., Ma, Z., & Liu, T. (2023). Forecasting energy demand, structure, and CO2 emission: a case study of Beijing, China. Environment, Development and Sustainability, 25(9), 10369–10391. doi:10.1007/s10668-022-02494-1.

Caetano, M. A. L., Gherardi, D. F. M., & Yoneyama, T. (2011). An optimized policy for the reduction of CO2 emission in the Brazilian Legal Amazon. Ecological Modelling, 222(15), 2835–2840. doi:10.1016/j.ecolmodel.2011.05.003.

Misra, A. K., & Verma, M. (2013). A mathematical model to study the dynamics of carbon dioxide gas in the atmosphere. Applied Mathematics and Computation, 219(16), 8595–8609. doi:10.1016/j.amc.2013.02.058.

Misra, A. K., Verma, M., & Venturino, E. (2015). Modeling the control of atmospheric carbon dioxide through reforestation: effect of time delay. Modeling Earth Systems and Environment, 1(3), 24. doi:10.1007/s40808-015-0028-z.

Beér, J. M. (2007). High efficiency electric power generation: The environmental role. Progress in Energy and Combustion Science, 33(2), 107–134. doi:10.1016/j.pecs.2006.08.002.

Liu, T., Xu, G., Cai, P., Tian, L., & Huang, Q. (2011). Development forecast of renewable energy power generation in China and its influence on the GHG control strategy of the country. Renewable Energy, 36(4), 1284–1292. doi:10.1016/j.renene.2010.09.020.

Jin, S. H., Bai, L., Kim, J. Y., Jeong, S. J., & Kim, K. S. (2017). Analysis of GHG emission reduction in South Korea using a CO2 transportation network optimization model. Energies, 10(7), 1027. doi:10.3390/en10071027.

Yoro, K. O., & Sekoai, P. T. (2016). The potential of CO2 capture and storage technology in South Africa’s coal-fired thermal power plants. Environments, 3(3), 1–20. doi:10.3390/environments3030024.

Mesarić, P., Dukec, D., & Krajcar, S. (2017). Exploring the potential of energy consumers in smart grid using focus group methodology. Sustainability (Switzerland), 9(8), 9. doi:10.3390/su9081463.

Siano, P. (2014). Demand response and smart grids - A survey. Renewable and Sustainable Energy Reviews, 30, 461–478. doi:10.1016/j.rser.2013.10.022.

Shi, J., Wang, Y., Fu, R., & Zhang, J. (2017). Operating strategy for local-area energy systems integration considering uncertainty of supply-side and demand-side under conditional value-at-risk assessment. Sustainability (Switzerland), 9(9), 9. doi:10.3390/su9091655.

Adnani, J., Hattaf, K., & Yousfi, N. (2013). Stability Analysis of a Stochastic SIR Epidemic Model with Specific Nonlinear Incidence Rate. International Journal of Stochastic Analysis, 431257, 1–4. doi:10.1155/2013/431257.

Alzabut, J., Alobaidi, G., Hussain, S., Madi, E. N., & Khan, H. (2022). Stochastic dynamics of influenza infection: Qualitative analysis and numerical results. Mathematical Biosciences and Engineering, 19(10), 10316–10331. doi:10.3934/mbe.2022482.

Hussain, S., Madi, E. N., Khan, H., Gulzar, H., Etemad, S., Rezapour, S., & Kaabar, M. K. A. (2022). On the Stochastic Modeling of COVID-19 under the Environmental White Noise. Journal of Function Spaces, 2022, 4320865. doi:10.1155/2022/4320865.

Gao, M., Jiang, D., & Hayat, T. (2019). Stationary distribution and periodic solution of stochastic chemostat models with single-species growth on two nutrients. International Journal of Biomathematics, 12(6), 1950063. doi:10.1142/S1793524519500633.

Liu, Q., Jiang, D., Hayat, T., & Ahmad, B. (2017). Asymptotic behavior of a stochastic delayed HIV-1 infection model with nonlinear incidence. Physica A: Statistical Mechanics and Its Applications, 486, 867–882. doi:10.1016/j.physa.2017.05.069.

Zhang, T., & Teng, Z. (2008). An impulsive delayed SEIRS epidemic model with saturation incidence. Journal of Biological Dynamics, 2(1), 64–84. doi:10.1080/17513750801894845.

Xu, R., & Ma, Z. (2009). Global stability of a SIR epidemic model with nonlinear incidence rate and time delay. Nonlinear Analysis: Real World Applications, 10(5), 3175–3189. doi:10.1016/j.nonrwa.2008.10.013.

Mikhaylov, A. N., Guseinov, D. V., Belov, A. I., Korolev, D. S., Shishmakova, V. A., Koryazhkina, M. N., Filatov, D. O., Gorshkov, O. N., Maldonado, D., Alonso, F. J., Roldán, J. B., Krichigin, A. V., Agudov, N. V., Dubkov, A. A., Carollo, A., & Spagnolo, B. (2021). Stochastic resonance in a metal-oxide memristive device. Chaos, Solitons & Fractals, 144, 110723. doi:10.1016/j.chaos.2021.110723.

Gawusu, S., & Ahmed, A. (2024). Analyzing variability in urban energy poverty: A stochastic modeling and Monte Carlo simulation approach. Energy, 304, 132194. doi:10.1016/j.energy.2024.132194.

Lisowski, B., Valenti, D., Spagnolo, B., Bier, M., & Gudowska-Nowak, E. (2015). Stepping molecular motor amid Lévy white noise. Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 91, 042713. doi:10.1103/PhysRevE.91.042713.

Jamatutu, S. A., Abbass, K., Gawusu, S., Yeboah, K. E., Jamatutu, I. A. M., & Song, H. (2024). Quantifying future carbon emissions uncertainties under stochastic modeling and Monte Carlo simulation: Insights for environmental policy consideration for the Belt and Road Initiative Region. Journal of Environmental Management, 370, 122463. doi:10.1016/j.jenvman.2024.122463.

Surazhevsky, I. A., Demin, V. A., Ilyasov, A. I., Emelyanov, A. V., Nikiruy, K. E., Rylkov, V. V., Shchanikov, S. A., Bordanov, I. A., Gerasimova, S. A., Guseinov, D. V., Malekhonova, N. V., Pavlov, D. A., Belov, A. I., Mikhaylov, A. N., Kazantsev, V. B., Valenti, D., Spagnolo, B., & Kovalchuk, M. V. (2021). Noise-assisted persistence and recovery of memory state in a memristive spiking neuromorphic network. Chaos, Solitons and Fractals, 146, 110890. doi:10.1016/j.chaos.2021.110890.

Abudureheman, M., Jiang, Q., Dong, X., & Dong, C. (2022). Spatial effects of dynamic comprehensive energy efficiency on CO2 reduction in China. Energy Policy, 166, 113024. doi:10.1016/j.enpol.2022.113024.

Xie, Q., Ma, D., Raza, M. Y., Tang, S., & Bai, D. (2023). Toward carbon peaking and neutralization: The heterogeneous stochastic convergence of CO2 emissions and the role of digital inclusive finance. Energy Economics, 125, 106841. doi:10.1016/j.eneco.2023.106841.

Yang, C., Bu, S., Fan, Y., Wan, W. X., Wang, R., & Foley, A. (2023). Data-driven prediction and evaluation on future impact of energy transition policies in smart regions. Applied Energy, 332, 120523. doi:10.1016/j.apenergy.2022.120523.

Valenti, D., Denaro, G., La Cognata, A., Spagnolo, B., Bonanno, A., Basilone, G., Mazzola, S., Zgozi, S., & Aronica, S. (2012). Picophytoplankton dynamics in noisy marine environment. Acta Physica Polonica B, 43(5), 1227–1240. doi:10.5506/APhysPolB.43.1227.

Chichigina, O. A., Dubkov, A. A., Valenti, D., & Spagnolo, B. (2011). Stability in a system subject to noise with regulated periodicity. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics, 84(2), 21134. doi:10.1103/PhysRevE.84.021134.

Bonanno, G., Valenti, D., & Spagnolo, B. (2006). Role of noise in a market model with stochastic volatility. European Physical Journal B, 53(3), 405–409. doi:10.1140/epjb/e2006-00388-1.

Valenti, D., Fazio, G., & Spagnolo, B. (2018). Stabilizing effect of volatility in financial markets. Physical Review E, 97(6), 062307. doi:10.1103/PhysRevE.97.062307.

Verma, M., Verma, A. K., & Misra, A. K. (2021). Mathematical modeling and optimal control of carbon dioxide emissions from energy sector. Environment, Development and Sustainability, 23(9), 13919–13944. doi:10.1007/s10668-021-01245-y.

Pasha, S. A., Nawaz, Y., & Arif, M. S. (2023). On the nonstandard finite difference method for reaction–diffusion models. Chaos, Solitons & Fractals, 166, 112929. doi:10.1016/j.chaos.2022.112929.

Baazeem, A. S., Nawaz, Y., Arif, M. S., Abodayeh, K., & AlHamrani, M. A. (2023). Modelling Infectious Disease Dynamics: A Robust Computational Approach for Stochastic SIRS with Partial Immunity and an Incidence Rate. Mathematics, 11(23), 4794. doi:10.3390/math11234794.

Arif, M. S., Abodayeh, K., & Nawaz, Y. (2024). A Third-order Two Stage Numerical Scheme and Neural Network Simulations for SEIR Epidemic Model: A Numerical Study. Emerging Science Journal, 8(1), 326–340. doi:10.28991/ESJ-2024-08-01-023.

Arif, M. S., Abodayeh, K., & Nawaz, Y. (2024). Precision in disease dynamics: Finite difference solutions for stochastic epidemics with treatment cure and partial immunity. Partial Differential Equations in Applied Mathematics, 9, 100660. doi:10.1016/j.padiff.2024.100660.


Full Text: PDF

DOI: 10.28991/ESJ-2025-09-01-012

Refbacks

  • There are currently no refbacks.