Unraveling the Myths of Rural vs. Urban Academic Achievement Drivers

Ana Beatriz-Afonso, Frederico Cruz-Jesus

Abstract


The generalized migration of individuals from rural to urban areas is a global phenomenon that entails many divides, education being one of them. However, there is a lack of understanding regarding whether the factors driving higher academic achievement (AA) differ between urban and rural students. This study uses data from almost every student in Portugal who took the Portuguese and/or mathematics high school national exams. By applying OLS, the aim is to identify the AA drivers and compare these drivers between urban and rural areas. Among the key findings, variables related to academic background emerged as the strongest predictors of AA, regardless of the environment. Additionally, ICT access is insignificant in urban and rural areas, while socio-economic status does not significantly impact AA amongst rural students. These findings highlight the need for tailored interventions that address the unique challenges faced by students in different areas, with a particular focus on enhancing academic support structures to improve educational outcomes. To the best of our knowledge, this study is the first to utilize data encompassing virtually every student in an entire country to compare and understand the differences in the determinants of AA between urban and rural areas.

 

Doi: 10.28991/ESJ-2024-08-06-010

Full Text: PDF


Keywords


Academic Achievement; Rural Education; Urban Education; OLS.

References


Soares da Silva, D., Figueiredo, E., Eusébio, C., & Carneiro, M. J. (2016). The countryside is worth a thousand words - Portuguese representations on rural areas. Journal of Rural Studies, 44, 77–88. doi:10.1016/j.jrurstud.2016.01.012.

Bachore, M. M. (2022). English Language Literacy Skills and Academic Achievement of Urban and Rural Secondary Schools: The Case of High and Low Achievers. Education Research International, 1, 2315426. doi:10.1155/2022/2315426.

Young, D. J. (1998). Rural and Urban Differences in Student Achievement in Science and Mathematics: A Multilevel Analysis. School Effectiveness and School Improvement, 9(4), 386–418. doi:10.1080/0924345980090403.

Woessmann, L. (2010). Institutional determinants of school efficiency and equity: German states as a microcosm for OECD countries. Jahrbucher Fur Nationalokonomie Und Statistik, 230(2), 234–270. doi:10.1515/jbnst-2010-0206.

Gordon, I., & Monastiriotis, V. (2007). Education, location, education: A spatial analysis of English secondary school public examination results. Urban Studies, 44(7), 1203–1228. doi:10.1080/00420980701302387.

Bratti, M., Checchi, D., & Filippin, A. (2021). Territorial Differences in Italian Students’ Mathematical Competencies: Evidence from PISA 2003. SSRN Electronic Journal, IZA Discussion Paper No. 2603. doi:10.2139/ssrn.969356.

Hillier, C., Zarifa, D., & Hango, D. (2022). Mind the Gaps: Examining Youth’s Reading, Math and Science Skills across Northern and Rural Canada. Rural Sociology, 87(1), 264–302. doi:10.1111/ruso.12401.

Murphy, S. (2019). School location and socioeconomic status and patterns of participation and achievement in senior secondary mathematics. Mathematics Education Research Journal, 31(3), 219–235. doi:10.1007/s13394-018-0251-9.

Hung, M., Smith, W. A., Voss, M. W., Franklin, J. D., Gu, Y., & Bounsanga, J. (2020). Exploring Student Achievement Gaps in School Districts across the United States. Education and Urban Society, 52(2), 175–193. doi:10.1177/0013124519833442.

Zhao, G., Ye, J., Li, Z., & Xue, S. (2017). How and why do Chinese urban students outperform their rural counterparts? China Economic Review, 45, 103–123. doi:10.1016/j.chieco.2017.06.006.

República Portuguesa (2024). Programa Nacional para a Coesão Territorial - O Interior em números: Território, 35–51. Available online: https://www.portugal.gov.pt/pt/gc21/governo/programa/programa-nacional-para-a-coesao-territorial-/ficheiros-coesao-territorial/programa-nacional-para-a-coesao-territorial-o-interior-em-numeros-os-territorios-do-interior-pdf.aspx (accessed on November 2024).

Marôco, J. (2021). Portugal: The PISA Effects on Education. In: Crato, N. (Eds) Improving a Country’s Education. Springer, Cham, Switzerland. doi:10.1007/978-3-030-59031-4_8.

Pordata. (2011). Resident population aged 15 and over according to the Census: total and by highest level of education completed -Municipalities. Pordata, Fundação Francisco Manuel dos Santos, Lisbon, Portugal. Available online: http://www.pordata.pt/Municipios/População+residente+com+15+e+mais+anos+segundo+os+Censos+total+e+por+nível+de+escolaridade+completo+mais+elevado-69 (accessed on November 2024).

Lee, H. (2022). What drives the performance of Chinese urban and rural secondary schools: A machine learning approach using PISA 2018. Cities, 123, 103609. doi:10.1016/j.cities.2022.103609.

Schwerter, J., Bleher, J., Doebler, P., & McElvany, N. (2023). Metropolitan, Urban, and Rural Regions – How Regional Differences Affect Elementary School Students’ Academic Achievement, Well-Being, and Motivation. SSRN Electronic Journal. doi:10.2139/ssrn.4368170.

Marker, C., Gnambs, T., & Appel, M. (2018). Active on Facebook and Failing at School? Meta-Analytic Findings on the Relationship between Online Social Networking Activities and Academic Achievement. Educational Psychology Review, 30(3), 651–677. doi:10.1007/s10648-017-9430-6.

Pereira, M. C., & Reis, H. (2012). Diferenças regionais no desempenho dos alunos portugueses: Evidencia do programa PISA da OCDE. Boletim Económico de Inverno, Banco de Portugal, 59–83.

Genesee, F., Lindholm-Leary, K., Saunders, B., & Christian, D. (2006). Educating English Language Learners. In Educating English Language Learners. Cambridge University Press, Cambridge, United Kingdom. doi:10.1017/cbo9780511499913.

Salmela-Aro, K., & Tynkkynen, L. (2012). Gendered pathways in school burnout among adolescents. Journal of Adolescence, 35(4), 929–939. doi:10.1016/j.adolescence.2012.01.001.

Cruz-Jesus, F., Castelli, M., Oliveira, T., Mendes, R., Nunes, C., Sa-Velho, M., & Rosa-Louro, A. (2020). Using artificial intelligence methods to assess academic achievement in public high schools of a European Union country. Heliyon, 6(6), 4081. doi:10.1016/j.heliyon.2020.e04081.

Asif, R., Merceron, A., Ali, S. A., & Haider, N. G. (2017). Analyzing undergraduate students’ performance using educational data mining. Computers and Education, 113, 177–194. doi:10.1016/j.compedu.2017.05.007.

Cohn, E., Cohn, S., Balch, D. C., & Bradley, J. (2004). Determinants of undergraduate GPAs: SAT scores, high-school GPA and high-school rank. Economics of Education Review, 23(6), 577–586. doi:10.1016/j.econedurev.2004.01.001.

Miguéis, V. L., Freitas, A., Garcia, P. J. V., & Silva, A. (2018). Early segmentation of students according to their academic performance: A predictive modelling approach. Decision Support Systems, 115, 36–51. doi:10.1016/j.dss.2018.09.001.

Nunes, C., Oliveira, T., Castelli, M., & Cruz-Jesus, F. (2023). Determinants of academic achievement: How parents and teachers influence high school students’ performance. Heliyon, 9(2). doi:10.1016/j.heliyon.2023.e13335.

Holmes, C. T. (1989). Grade level retention effects: A meta-analysis of research studies. Flunking grades: Research and Policies on Retention, 16, 33.

Klapproth, F., Schaltz, P., Brunner, M., Keller, U., Fischbach, A., Ugen, S., & Martin, R. (2016). Short-term and medium-term effects of grade retention in secondary school on academic achievement and psychosocial outcome variables. Learning and Individual Differences, 50, 182–194. doi:10.1016/j.lindif.2016.08.014.

Pagani, L., Tremblay, R. E., Vitaro, F., Boulerice, B., & McDuff, P. (2001). Effects of grade retention on academic performance and behavioral development. Development and Psychopathology, 13(2), 297–315. doi:10.1017/S0954579401002061.

Lounkaew, K. (2013). Explaining urban-rural differences in educational achievement in Thailand: Evidence from PISA literacy data. Economics of Education Review, 37, 213–225. doi:10.1016/j.econedurev.2013.09.003.

Dale, P. S., Paul, A., Rosholm, M., & Bleses, D. (2023). Prediction from early childhood vocabulary to academic achievement at the end of compulsory schooling in Denmark. International Journal of Behavioral Development, 47(2), 123–134. doi:10.1177/01650254221116878.

Archibald, S. (2006). Narrowing in on educational resources that do affect student achievement. Peabody Journal of Education, 81(4), 23–42. doi:10.1207/s15327930pje8104_2.

Hodis, F. A., Johnston, M., Meyer, L. H., McClure, J., Hodis, G. M., & Starkey, L. (2015). Maximal levels of aspiration, minimal boundary goals, and their relationships with academic achievement: The case of secondary-school students. British Educational Research Journal, 41(6), 1125–1141. doi:10.1002/berj.3189.

Costa-Mendes, R., Oliveira, T., Castelli, M., & Cruz-Jesus, F. (2021). A machine learning approximation of the 2015 Portuguese high school student grades: A hybrid approach. Education and Information Technologies, 26(2), 1527–1547. doi:10.1007/s10639-020-10316-y.

Valli Jayanthi, S., Balakrishnan, S., Lim Siok Ching, A., Aaqilah Abdul Latiff, N., & Nasirudeen, A. M. A. (2014). Factors Contributing to Academic Performance of Students in a Tertiary Institution in Singapore. American Journal of Educational Research, 2(9), 752–758. doi:10.12691/education-2-9-8.

Musso, M. F., Hernández, C. F. R., & Cascallar, E. C. (2020). Predicting key educational outcomes in academic trajectories: a machine-learning approach. Higher Education, 80(5), 875–894. doi:10.1007/s10734-020-00520-7.

Long, K., & Renbarger, R. (2023). Persistence of Poverty: How Measures of Socioeconomic Status Have Changed Over Time. Educational Researcher, 52(3), 144–154. doi:10.3102/0013189X221141409.

Steinmayr, R., Dinger, F. C., & Spinath, B. (2010). Parents’ education and children's achievement: The role of personality. European Journal of Personality, 24(6), 535-550. doi:10.1002/per.755.

Coleman, J. S. (1968). Equality of Educational Opportunity. Equity and Excellence in Education, 6(5), 19–28. doi:10.1080/0020486680060504.

Tesfagiorgis, M., Tsegai, S., Mengesha, T., Craft, J., & Tessema, M. (2020). The correlation between parental socioeconomic status (SES) and children’s academic achievement: The case of Eritrea. Children and Youth Services Review, 116(July), 105242. doi:10.1016/j.childyouth.2020.105242.

Moulin, L. (2023). Do private schools increase academic achievement? Evidence from France. Education Economics, 31(2), 247–274. doi:10.1080/09645292.2022.2061428.

Acuña, E., & Rodriguez, C. (2004). The Treatment of Missing Values and its Effect on Classifier Accuracy. Classification, Clustering, and Data Mining Applications, 639–647. doi:10.1007/978-3-642-17103-1_60.

Bilal, M., Omar, M., Anwar, W., Bokhari, R. H., & Choi, G. S. (2022). The role of demographic and academic features in a student performance prediction. Scientific Reports, 12(1), 12508. doi:10.1038/s41598-022-15880-6.

PDR (2020). Lista de Freguesias Rurais PDR 2020. Programa de Desenvolvimento Rural 2014-2020, Lisbon, Portugal.

Ricciardi, C., Manfra, L., Hartman, S., Bleiker, C., Dineheart, L., & Winsler, A. (2021). School readiness skills at age four predict academic achievement through 5th grade. Early Childhood Research Quarterly, 57, 110–120. doi:10.1016/j.ecresq.2021.05.006.

Wakefield, J., & Frawley, J. K. (2020). How does students’ general academic achievement moderate the implications of social networking on specific levels of learning performance? Computers and Education, 144. doi:10.1016/j.compedu.2019.103694.

James, G., Witten, D., Hastie, T., & Tibshirani, R. (2000). An introduction to Statistical Learning. Current Medicinal Chemistry, 7(10), 995–1039. doi:10.1007/978-1-4614-7138-7.

Aaronson, D., Barrow, L., & Sander, W. (2007). Teachers and student achievement in the Chicago public high schools. Journal of Labor Economics, 25(1), 95–135. doi:10.1086/508733.

Berthelon, M., Bettinger, E., Kruger, D. I., & Montecinos-Pearce, A. (2019). The Structure of Peers: The Impact of Peer Networks on Academic Achievement. Research in Higher Education, 60(7), 931–959. doi:10.1007/s11162-018-09543-7.

Bowers, A. J. (2010). Grades and graduation: A longitudinal risk perspective to identify student dropouts. Journal of Educational Research, 103(3), 191–207. doi:10.1080/00220670903382970.

Wang, N. (2024). The Urban–Rural Heterogeneous Effect of Family SES on Achievement: The Mediating Role of Culture. Behavioral Sciences, 14(2), 84. doi:10.3390/bs14020084.

Ferrão, M., & Almeida, L. (2019). Differential effect of university entrance score on first-year students’ academic performance in Portugal. Assessment and Evaluation in Higher Education, 44(4), 610–622. doi:10.1080/02602938.2018.1525602.

Barbosa-Camacho, F. J., Romero-Limón, O. M., Ibarrola-Peña, J. C., Almanza-Mena, Y. L., … González-Ojeda, A. (2022). Depression, anxiety, and academic performance in COVID-19: a cross-sectional study. BMC Psychiatry, 22(1), 1–10. doi:10.1186/s12888-022-04062-3.

Guèvremont, A., Roos, N. P., & Brownell, M. (2007). Predictors and Consequences of Grade Retention: Examining Data from Manitoba, Canada. Canadian Journal of School Psychology, 22(1), 50–67. doi:10.1177/0829573507301038.

Nunes, C., Beatriz-Afonso, A., Cruz-Jesus, F., Oliveira, T., & Castelli, M. (2022). Mathematics and Mother Tongue Academic Achievement: A Machine Learning Approach. Emerging Science Journal, 6(special issue), 137–149. doi:10.28991/ESJ-2022-SIED-010.

Kubey, R. W., Lavin, M. J., & Barrows, J. R. (2001). Internet use and collegiate academic performance decrements: Early findings. Journal of Communication, 51(2), 366–382. doi:10.1111/j.1460-2466.2001.tb02885.x.

Mensah, F. K., & Kiernan, K. E. (2010). Gender differences in educational attainment: Influences of the family environment. British Educational Research Journal, 36(2), 239–260. doi:10.1080/01411920902802198.

Delen, D. (2010). A comparative analysis of machine learning techniques for student retention management. Decision Support Systems, 49(4), 498–506. doi:10.1016/j.dss.2010.06.003.

Chesters, J., & Daly, A. (2017). Do peer effects mediate the association between family socio-economic status and educational achievement? Australian Journal of Social Issues, 52(1), 65–77. doi:10.1002/ajs4.3.

Bartels, R., & Goodhew, J. (1981). The Robustness of the Durbin-Watson Test. In The Review of Economics and Statistics (Vol. 63, Issue 1, p. 136). doi:10.2307/1924228.

Anscombe, F. J., & Tukey, J. W. (1963). The Examination and Analysis of Residuals. Technometrics, 5(2), 141–160. doi:10.1080/00401706.1963.10490071.

O’Brien, R. M. (2007). A caution regarding rules of thumb for variance inflation factors. Quality and Quantity, 41(5), 673–690. doi:10.1007/s11135-006-9018-6.

Belsley, D. a, Kuh, E., & Welsch, R. E. (1980). Identifying influential data and sources of collinearity. Wiley, New Jersey, United States. doi:10.1002/0471725153.

White, H. (1980). A Heteroskedasticity-Consistent Covariance Matrix Estimator and a Direct Test for Heteroskedasticity. Econometrica, 48(4), 817. doi:10.2307/1912934.

Dean, J., Roberts, P., Downes, N., & Goldsmith, A. (2023). The spatial implications of academic achievement in Year 12: Rethinking discourses of disadvantage in rural locations. Australian Journal of Education, 67(1), 94–114. doi:10.1177/00049441231155708.

Mariano, L. T., Martorell, P., & Berglund, T. (2024). The effects of grade retention on high school outcomes: Evidence from New York City schools. Journal of Research on Educational Effectiveness, 1-31. doi:10.1080/19345747.2023.2287607.

Nunes, L. C., Balcão Reis, A., & Seabra, C. (2018). Is retention beneficial to low-achieving students? Evidence from Portugal. Applied Economics, 50(40), 4306–4317). doi:10.1080/00036846.2018.1444261.

Larsen, M. F., & Valant, J. (2024). The long-term effects of grade retention: Evidence on persistence through high school and college. Journal of Research on Educational Effectiveness, 17(4), 615-646. doi:10.1080/19345747.2023.2240323.

Martin, A. J. (2011). Holding back and holding behind: Grade retention and students’ non-academic and academic outcomes. British Educational Research Journal, 37(5), 739–763. doi:10.1080/01411926.2010.490874.

Hill, A. J. (2014). The costs of failure: Negative externalities in high school course repetition. Economics of Education Review, 43, 91–105. doi:10.1016/j.econedurev.2014.10.002.

Freeman, J., & Simonsen, B. (2015). Examining the Impact of Policy and Practice Interventions on High School Dropout and School Completion Rates: A Systematic Review of the Literature. Review of Educational Research, 85(2), 205–248. doi:10.3102/0034654314554431.

Määttä, M., & Aaltonen, S. (2016). Between rights and obligations – rethinking youth participation at the margins. International Journal of Sociology and Social Policy, 36(3–4), 157–172. doi:10.1108/IJSSP-09-2014-0066.

Mazrekaj, D., & De Witte, K. (2020). The effect of modular education on school dropout. British Educational Research Journal, 46(1), 92–121. doi:10.1002/berj.3569.

DataReportal. (2022). Digital 2022: Portugal. DataReportal – Global Digital Insights: Kepios. Available online: https://datareportal.com/reports/digital-2022-portugal (accessed on November 2024).

Eurostat (2023). ICT usage in households and by individuals (isoc_i). Eurostat Metadata, Luxembourg City, Luxembourg Available online: https://ec.europa.eu/eurostat/cache/metadata/EN/isoc_i_simsih2_pt.htm (accessed on November 2024).

Ministério do Planeamento (2021). Recover Portugal, Rebuilding the Future: Recovery and Resilience Plan. Available online: https://www.consultalex.gov.pt/ConsultaPublica_Detail.aspx?Consulta_Id=183 (accessed on November 2024).

Lei, H., Xiong, Y., Chiu, M. M., Zhang, J., & Cai, Z. (2021). The relationship between ICT literacy and academic achievement among students: A meta-analysis. Children and Youth Services Review, 127. doi:10.1016/j.childyouth.2021.106123.

Park, S., & Weng, W. (2020). The relationship between ICT-related factors and student academic achievement and the moderating effect of country economic indexes across 39 countries: Using multilevel structural equation modelling. Educational Technology and Society, 23(3), 1–15. doi:10.2307/26926422.

Ren, W., Zhu, X., & Yang, J. (2022). The SES-based difference of adolescents’ digital skills and usages: An explanation from family cultural capital. Computers and Education, 177. doi:10.1016/j.compedu.2021.104382.

Verbree, A. R., Hornstra, L., Maas, L., & Wijngaards-de Meij, L. (2023). Conscientiousness as a Predictor of the Gender Gap in Academic Achievement. Research in Higher Education, 64(3), 451–472. doi:10.1007/s11162-022-09716-5.

King, R. B. (2016). Gender differences in motivation, engagement and achievement are related to students’ perceptions of peer—but not of parent or teacher—attitudes toward school. Learning and Individual Differences, 52, 60–71. doi:10.1016/j.lindif.2016.10.006.

Wang, J., & Wu, Y. (2023). Income inequality, cultural capital, and high school students’ academic achievement in OECD countries: A moderated mediation analysis. British Journal of Sociology, 74(2), 148–172. doi:10.1111/1468-4446.12997.

De Graaf, N. D., De Graaf, P. M., & Kraaykamp, G. (2000). Parental cultural capital and educational attainment in the Netherlands: A refinement of the cultural capital perspective. Sociology of Education, 73(2), 92–111. doi:10.2307/2673239.

Wang, W., Dong, Y., Liu, X., Bai, Y., & Zhang, L. (2020). The effect of parents’ education on the academic and non-cognitive outcomes of their children: Evidence from China. Children and Youth Services Review, 117. doi:10.1016/j.childyouth.2020.105307.

Trinidad, J. E. (2020). Will it matter who I’m in school with? Differential influence of collective expectations on urban and rural US schools. International Studies in Sociology of Education, 29(4), 344–365. doi:10.1080/09620214.2019.1673791.

Agger, C., Meece, J., & Byun, S. Yong. (2018). The Influences of Family and Place on Rural Adolescents’ Educational Aspirations and Post-secondary Enrollment. Journal of Youth and Adolescence, 47(12), 2554–2568. doi:10.1007/s10964-018-0893-7.

Banerjee, P. A. (2016). A systematic review of factors linked to poor academic performance of disadvantaged students in science and maths in schools. Cogent Education, 3(1), 1178441. doi:10.1080/2331186X.2016.1178441.

Chesters, J., & Cuervo, H. (2022). (In)equality of opportunity: educational attainments of young people from rural, regional and urban Australia. Australian Educational Researcher, 49(1), 43–61. doi:10.1007/s13384-021-00432-0.

Oberti, M., & Savina, Y. (2019). Urban and school segregation in Paris: The complexity of contextual effects on school achievement: The case of middle schools in the Paris metropolitan area. Urban Studies, 56(15), 3117–3142. doi:10.1177/0042098018811733.

Golsteyn, B. H. H., Non, A., & Zölitz, U. (2021). The impact of peer personality on academic achievement. Journal of Political Economy, 129(4), 1052–1099. doi:10.1086/712638.

Martínez Abad, F., & Chaparro Caso López, A. A. (2017). Data-mining techniques in detecting factors linked to academic achievement. School Effectiveness and School Improvement, 28(1), 39–55. doi:10.1080/09243453.2016.1235591.

Serrati, P. S. (2024). School and residential segregation in the reproduction of urban segregation: A case study in Buenos Aires. Urban Studies, 61(2), 313–330. doi:10.1177/00420980231178401.

Damme, M.-C. O. J. Van. (2001). Relationship between School Composition and Characteristics of School Process and their Effect on Mathematics Achievement. British Educational Research Journal, 27(4), 407–432. doi:10.1080/01411920125573.

Kallert, A., Belina, B., Miessner, M., & Naumann, M. (2021). The Cultural Political Economy of rural governance: Regional development in Hesse (Germany). Journal of Rural Studies, 87, 327–337. doi:10.1016/j.jrurstud.2021.09.017.

Abrantes, P., Mauritti, R., Roldão, C., Alves, L., Amaral, P., Baptista, I., ... & Teixeira, A. (2011). Effects of TEIP: An Evaluation of the Academic and Social Impacts in Seven Territories of Educational Priority Intervention. A Synthesis of Results, Lisbon, Portugal.

Pezzoli, K., Hibbard, M., & Huntoon, L. (2009). Introduction to symposium: Is progressive regionalism an actionable framework for critical planning theory and practice? Journal of Planning Education and Research, 28(3), 336–340. doi:10.1177/0739456X08329711.


Full Text: PDF

DOI: 10.28991/ESJ-2024-08-06-010

Refbacks

  • There are currently no refbacks.