PM2.5 IoT Sensor Calibration and Implementation Issues Including Machine Learning

Wacharapong Srisang, Krisanadej Jaroensutasinee, Mullica Jaroensutasinee, Chonthicha Khongthong, John Rex P. Piamonte, Elena B. Sparrow

Abstract


Affordable IoT PM2.5 sensors, enabled by the Internet of Things, offer new ways to monitor air quality. However, concerns exist about their data accuracy. This study aimed (1) to investigate the low-cost PM sensor's performance under various outdoor ambient circumstances and (2) to evaluate seven calibration methods, which include decision trees, gradient-boosted trees, linear regression, nearest neighbors, neural networks, random forests, and the Gaussian Process. The Davis AirLink was used as a reference to compare the Plantower PMS3003 sensor's performance. The data from the Plantower PMS3003 sensor were then compared to the Davis AirLink values using calibration curves created by machine learning algorithms. Calibration curves were generated using machine learning algorithms trained on sensor measurements collected in two Thai cities (Nakhon Si Thammarat and Phuket). Our results show that all machine learning methods outperformed traditional linear regression, with decision trees and neural networks demonstrating the most significant improvement. This research highlights the need for sensor calibration and the limitations of current calibration methods and paves the way for advancements in cloud-based calibration and machine learning for improved data accuracy in IoT PM2.5sensor technology.

 

Doi: 10.28991/ESJ-2024-08-06-08

Full Text: PDF


Keywords


Air Pollution; Particulate Matter 1, 2.5, 10 Microns; IoT; Sensors; Machine Learning.

References


Ali, S., Alam, F., Potgieter, J., & Arif, K. M. (2024). Leveraging Temporal Information to Improve Machine Learning-Based Calibration Techniques for Low-Cost Air Quality Sensors. Sensors, 24(9), 2930. doi:10.3390/s24092930.

Gladson, L. A., Cromar, K. R., Ghazipura, M., Knowland, K. E., Keller, C. A., & Duncan, B. (2022). Communicating respiratory health risk among children using a global air quality index. Environment International, 159, 107023. doi:10.1016/j.envint.2021.107023.

Xu, J., Huang, L., Bao, T., Duan, K., Cheng, Y., Zhang, H., Zhang, Y., Li, J., Li, Q., & Li, F. (2023). CircCDR1as mediates PM2.5-induced lung cancer progression by binding to SRSF1. Ecotoxicology and Environmental Safety, 249, 114367. doi:10.1016/j.ecoenv.2022.114367.

WHO. (2013). Health Effects of Particulate Matter: Policy implications for countries in Eastern Europe, Caucasus and central Asia. World Health Organization, New York, United States.

Xiong, Y., Zhou, J., Schauer, J. J., Yu, W., & Hu, Y. (2017). Seasonal and spatial differences in source contributions to PM2.5 in Wuhan, China. Science of the Total Environment, 577, 155–165. doi:10.1016/j.scitotenv.2016.10.150.

De Vito, S., D’Elia, G., Ferlito, S., Di Francia, G., Davidović, M. D., Kleut, D., Stojanović, D., & Jovaševic-Stojanović, M. (2024). A Global Multiunit Calibration as a Method for Large-Scale IoT Particulate Matter Monitoring Systems Deployments. IEEE Transactions on Instrumentation and Measurement, 73, 1–16. doi:10.1109/TIM.2023.3331428.

Raysoni, A. U., Pinakana, S. D., Mendez, E., Wladyka, D., Sepielak, K., & Temby, O. (2023). A Review of Literature on the Usage of Low-Cost Sensors to Measure Particulate Matter. Earth (Switzerland), 4(1), 168–186. doi:10.3390/earth4010009.

Agbo, K. E., Walgraeve, C., Eze, J. I., Ugwoke, P. E., Ukoha, P. O., & Van Langenhove, H. (2021). A review on ambient and indoor air pollution status in Africa. Atmospheric Pollution Research, 12(2), 243–260. doi:10.1016/j.apr.2020.11.006.

Anderson, J. O., Thundiyil, J. G., & Stolbach, A. (2012). Clearing the Air: A Review of the Effects of Particulate Matter Air Pollution on Human Health. Journal of Medical Toxicology, 8(2), 166–175. doi:10.1007/s13181-011-0203-1.

Si, M., Xiong, Y., Du, S., & Du, K. (2020). Evaluation and calibration of a low-cost particle sensor in ambient conditions using machine-learning methods. Atmospheric Measurement Techniques, 13(4), 1693–1707. doi:10.5194/amt-13-1693-2020.

Lu, Y., Giuliano, G., & Habre, R. (2021). Estimating hourly PM2.5 concentrations at the neighborhood scale using a low-cost air sensor network: A Los Angeles case study. Environmental Research, 195, 110653. doi:10.1016/j.envres.2020.110653.

Lee, C. H., Wang, Y. Bin, & Yu, H. L. (2019). An efficient spatiotemporal data calibration approach for the low-cost PM2.5 sensing network: A case study in Taiwan. Environment International, 130, 104838. doi:10.1016/j.envint.2019.05.032.

Wang, Z., Delp, W. W., & Singer, B. C. (2020). Performance of low-cost indoor air quality monitors for PM2.5 and PM10 from residential sources. Building and Environment, 171, 106654. doi:10.1016/j.buildenv.2020.106654.

Morawska, L., Thai, P. K., Liu, X., Asumadu-Sakyi, A., Ayoko, G., Bartonova, A., Bedini, A., Chai, F., Christensen, B., Dunbabin, M., Gao, J., Hagler, G. S. W., Jayaratne, R., Kumar, P., Lau, A. K. H., Louie, P. K. K., Mazaheri, M., Ning, Z., Motta, N., … Williams, R. (2018). Applications of low-cost sensing technologies for air quality monitoring and exposure assessment: How far have they gone? Environment International, 116, 286–299. doi:10.1016/j.envint.2018.04.018.

Liu, X., Jayaratne, R., Thai, P., Kuhn, T., Zing, I., Christensen, B., Lamont, R., Dunbabin, M., Zhu, S., Gao, J., Wainwright, D., Neale, D., Kan, R., Kirkwood, J., & Morawska, L. (2020). Low-cost sensors as an alternative for long-term air quality monitoring. Environmental Research, 185, 109438. doi:10.1016/j.envres.2020.109438.

Lin, Y., Dong, W., & Chen, Y. (2018). Calibrating Low-Cost Sensors by a Two-Phase Learning Approach for Urban Air Quality Measurement. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, 2(1), 1–18. doi:10.1145/3191750.

Loh, B. G., & Choi, G. H. (2019). Calibration of Portable Particulate Matter–Monitoring Device using Web Query and Machine Learning. Safety and Health at Work, 10(4), 452–460. doi:10.1016/j.shaw.2019.08.002.

Lecun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436–444. doi:10.1038/nature14539.

Austin, E., Novosselov, I., Seto, E., & Yost, M. G. (2015). Laboratory evaluation of the Shinyei PPD42NS low-cost particulate matter sensor. PLoS ONE, 10(9), 137789. doi:10.1371/journal.pone.0137789.

Steinle, S., Reis, S., Sabel, C. E., Semple, S., Twigg, M. M., Braban, C. F., Leeson, S. R., Heal, M. R., Harrison, D., Lin, C., & Wu, H. (2015). Personal exposure monitoring of PM2.5 in indoor and outdoor microenvironments. Science of the Total Environment, 508, 383–394. doi:10.1016/j.scitotenv.2014.12.003.

Oluwadairo, T., Whitehead, L., Symanski, E., Bauer, C., Carson, A., & Han, I. (2022). Effects of aerosol particle size on the measurement of airborne PM2.5 with a low-cost particulate matter sensor (LCPMS) in a laboratory chamber. Environmental Monitoring and Assessment, 194(2), 56. doi:10.1007/s10661-021-09715-6.

Alvarado, M., Gonzalez, F., Fletcher, A., & Doshi, A. (2015). Towards the development of a low cost airborne sensing system to monitor dust particles after blasting at open-pit mine sites. Sensors (Switzerland), 15(8), 19667–19687. doi:10.3390/s150819667.

Zervaki, O. (2018). Calibration and Evaluation of Low-Cost Optical Dust Sensors and Monitors. Master’s Thesis, University of Cincinnati, Ohio, United States.

Sayahi, T., Butterfield, A., & Kelly, K. E. (2019). Long-term field evaluation of the Plantower PMS low-cost particulate matter sensors. Environmental Pollution, 245, 932–940. doi:10.1016/j.envpol.2018.11.065.

Zheng, T., Bergin, M. H., Johnson, K. K., Tripathi, S. N., Shirodkar, S., Landis, M. S., Sutaria, R., & Carlson, D. E. (2018). Field evaluation of low-cost particulate matter sensors in high-and low-concentration environments. Atmospheric Measurement Techniques, 11(8), 4823–4846. doi:10.5194/amt-11-4823-2018.

Chen, T., & Guestrin, C. (2016). XGBoost: A scalable tree boosting system. Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 13-17-August-2016, 785–794. doi:10.1145/2939672.2939785.

Nguyen, C. D. T., & To, H. T. (2019). Evaluating the applicability of a low-cost sensor for measuring PM2.5 concentration in Ho Chi Minh city, Viet Nam. Science and Technology Development Journal, 22(3), 343–347. doi:10.32508/stdj.v22i3.1688.

Koziel, S., Pietrenko-Dabrowska, A., Wojcikowski, M., & Pankiewicz, B. (2024). Efficient calibration of cost-efficient particulate matter sensors using machine learning and time-series alignment. Knowledge-Based Systems, 295, 111879. doi:10.1016/j.knosys.2024.111879.

Lung, S. C. C., Hien, T. T., Cambaliza, M. O. L., Hlaing, O. M. T., Oanh, N. T. K., Latif, M. T., Lestari, P., Salam, A., Lee, S. Y., Wang, W. C. V., Tsou, M. C. M., Cong-Thanh, T., Cruz, M. T., Tantrakarnapa, K., Othman, M., Roy, S., Dang, T. N., & Agustian, D. (2022). Research Priorities of Applying Low-Cost PM2.5 Sensors in Southeast Asian Countries. International Journal of Environmental Research and Public Health, 19(3), 1522. doi:10.3390/ijerph19031522.

Datta, A., Saha, A., Zamora, M. L., Buehler, C., Hao, L., Xiong, F., Gentner, D. R., & Koehler, K. (2020). Statistical field calibration of a low-cost PM2.5 monitoring network in Baltimore. Atmospheric Environment, 242, 117761. doi:10.1016/j.atmosenv.2020.117761.

Munir, S., Mayfield, M., Coca, D., Jubb, S. A., & Osammor, O. (2019). Analysing the performance of low-cost air quality sensors, their drivers, relative benefits and calibration in cities—a case study in Sheffield. Environmental Monitoring and Assessment, 191(2), 94. doi:10.1007/s10661-019-7231-8.

Spinelle, L., Gerboles, M., Villani, M. G., Aleixandre, M., & Bonavitacola, F. (2015). Field calibration of a cluster of low-cost available sensors for air quality monitoring. Part A: Ozone and nitrogen dioxide. Sensors and Actuators, B: Chemical, 215, 249–257. doi:10.1016/j.snb.2015.03.031.

Spinelle, L., Gerboles, M., Villani, M. G., Aleixandre, M., & Bonavitacola, F. (2017). Field calibration of a cluster of low-cost commercially available sensors for air quality monitoring. Part B: NO, CO and CO2. Sensors and Actuators, B: Chemical, 238, 706–715. doi:10.1016/j.snb.2016.07.036.

Jeon, H., Ryu, J., Kim, K. M., & An, J. (2023). The Development of a Low-Cost Particulate Matter 2.5 Sensor Calibration Model in Daycare Centers Using Long Short-Term Memory Algorithms. Atmosphere, 14(8), 1228. doi:10.3390/atmos14081228.

Kaliszewski, M., Włodarski, M., Młyńczak, J., & Kopczyński, K. (2020). Comparison of low-cost particulate matter sensors for indoor air monitoring during covid-19 lockdown. Sensors (Switzerland), 20(24), 1–17. doi:10.3390/s20247290.

Vajs, I., Drajic, D., & Cica, Z. (2023). Data-Driven Machine Learning Calibration Propagation in A Hybrid Sensor Network for Air Quality Monitoring. Sensors, 23(5), 2815. doi:10.3390/s23052815.


Full Text: PDF

DOI: 10.28991/ESJ-2024-08-06-08

Refbacks

  • There are currently no refbacks.