Estimating Ruin Probability in an Insurance Risk Model Using the Wang-PH Transform Through Claim Simulation

Weenakorn Ieosanurak, Adisak Moumeesri

Abstract


The accurate estimation of ruin probability is a fundamental challenge in non-life insurance, impacting financial stability, risk management strategies, and operational decisions. This study aims to propose an approach for estimating ruin probability using claim simulation enhanced by the Wang-PH transform to fit various loss distributions, including Gamma, Weibull, Lognormal, Log-logistic, Inverse Weibull, and Inverse Gaussian, to actual claim data. Methods involve the transformation of loss distributions via the Wang-PH transform and rigorous evaluation to select the optimal distribution model that best reflects actual claim characteristics. This model serves as the foundation for estimating finite-time ruin probability through claim simulation, employing the acceptance-rejection technique to generate random samples. Additionally, a regression-based methodology estimates the minimum capital reserve required to safeguard against financial risk. Findings indicate the proposed method's computational efficiency, making it a valuable tool for insurers and risk analysts in assessing and mitigating financial risks in the non-life insurance sector. The novelty of this study lies in the integration of the Wang-PH transform with empirical data fitting and simulation techniques, applied to estimating ruin probability and determining capital reserves.

 

Doi: 10.28991/ESJ-2025-09-01-011

Full Text: PDF


Keywords


Claim Simulation; Loss Distribution; Minimum Capital Reserve; Non-Life Insurance; Ruin Probability; Wang Transform.

References


Klugman, S. A., Panjer, H. H., & Willmot, G. E. (2013). Loss Models. Wiley Series in Probability and Statistics, John Wiley & Sons, Hoboken, United States. doi:10.1002/9781118787106.

McNeil, A. J., Frey, R., & Embrechts, P. (2015). Quantitative risk management: concepts, techniques and tools-revised edition. Princeton University Press, Princeton, United States.

Dhaene, J., Vanduffel, S., Goovaerts, M. J., Kaas, R., Tang, Q., & Vyncke, D. (2006). Risk measures and comonotonicity: A review. Stochastic Models, 22(4), 573–606. doi:10.1080/15326340600878016.

Wang, S. (1995). Insurance pricing and increased limits ratemaking by proportional hazards transforms. Insurance: Mathematics and Economics, 17(1), 43–54. doi:10.1016/0167-6687(95)00010-P.

Wang, S. (1996). Premium Calculation by Transforming the Layer Premium Density. ASTIN Bulletin, 26(1), 71–92. doi:10.2143/ast.26.1.563234.

Wang, S. S., Young, V. R., & Panjer, H. H. (1997). Axiomatic characterization of insurance prices. Insurance: Mathematics and Economics, 21(2), 173–183. doi:10.1016/S0167-6687(97)00031-0.

Young, V. R. (1999). Discussion of Christofides’ Conjecture Regarding Wang’s Premium Principle. ASTIN Bulletin, 29(2), 191–195. doi:10.2143/ast.29.2.504610.

Wang, S. S. (2000). A Class of Distortion Operators for Pricing Financial and Insurance Risks. The Journal of Risk and Insurance, 67(1), 15. doi:10.2307/253675.

Calderín-Ojeda, E., Gómez-Déniz, E., & Vázquez-Polo, F. J. (2023). Conditional Tail Expectation and Premium Calculation under Asymmetric Loss. Axioms, 12(5), 496. doi:10.3390/axioms12050496.

Psarrakos, G. (2024). Calculating premium principles from the mode of a unimodal weighted distribution. ASTIN Bulletin, 54(3), 791–803. doi:10.1017/asb.2024.18.

Cramér, H. (1959). On the Mathematical Theory of Risk. Centraltryckeriet, Stockholm, Sweden.

Chan, W. S., & Zhang, L. (2006). Direct Derivation of Finite-Time Ruin Probabilities in the Discrete Risk Model with Exponential or Geometric Claims. North American Actuarial Journal, 10(4), 269–279. doi:10.1080/10920277.2006.10597426.

Sattayatham, P., Sangaroon, K., & Klongdee, W. (2013). Ruin probability-based initial capital of the discrete-time surplus process. Variance, 7(1), 74-81.

Pavlova, K. P., & Willmot, G. E. (2004). The discrete stationary renewal risk model and the Gerber–Shiu discounted penalty function. Insurance: Mathematics and Economics, 35(2), 267–277. doi:10.1016/j.insmatheco.2004.04.006.

Li, S. (2005). On a class of discrete time renewal risk models. Scandinavian Actuarial Journal, 2005(4), 241–260. doi:10.1080/03461230510009745.

Li, S. (2005). Distributions of the surplus before ruin, the deficit at ruin and the claim causing ruin in a class of discrete time risk models. Scandinavian Actuarial Journal, 2005(4), 271–284. doi:10.1080/03461230510009808.

Klongdee, W., Sattayatham, P., & Boonta, S. (2013). On approximating the ruin probability and the minimum initial capital of the finite-time risk process by separated claim technique of motor insurance. Far East Journal of Mathematical Sciences (FJMS), (IV), 597-604.

Jing, H., Peng, J., Jiang, Z., & Bao, Q. (2022). Asymptotic estimates for finite-time ruin probability in a discrete-time risk model with dependence structures and CMC simulations. Communications in Statistics - Theory and Methods, 51(11), 3761–3786. doi:10.1080/03610926.2020.1801740.

Xu, C., Wang, K., & Wu, X. (2024). The finite-time ruin probability of a risk model with stochastic return and subexponential claim sizes*. Communications in Statistics - Theory and Methods, 53(6), 2194–2204. doi:10.1080/03610926.2022.2122840.

Yıldırım Külekci, B., Korn, R., & Selcuk-Kestel, A. S. (2024). Ruin probability for heavy-tailed and dependent losses under reinsurance strategies. Mathematics and Computers in Simulation, 226, 118–138. doi:10.1016/j.matcom.2024.06.018.

Liu, X., Gao, Q., & Kan, L. (2024). Uniform Asymptotics for a Renewal Risk Model with a Random Number of Delayed Claims. Journal of Industrial and Management Optimization, 20(11), 3415–3431. doi:10.3934/jimo.2024059.

Denisov, D., Gotthardt, N., Korshunov, D., & Wachtel, V. (2024). Probabilistic approach to risk processes with level-dependent premium rate. Insurance: Mathematics and Economics, 118, 142–156. doi:10.1016/j.insmatheco.2024.06.002.

Li, M., Chen, Z., Cheng, D., & Zhou, J. (2024). Uniform asymptotics for finite-time ruin probabilities of a bidimensional compound risk model with stochastic returns. Statistics & Probability Letters, 207, 110013. doi:10.1016/j.spl.2023.110013.

Xu, C., Wang, K., & Peng, J. (2024). Uniform Asymptotics for Finite-Time Ruin Probabilities of Risk Models with Non-Stationary Arrivals and Strongly Subexponential Claim Sizes. Wuhan University Journal of Natural Sciences, 29(1), 21–28. doi:10.1051/wujns/2024291021.

Akaike, H. (1974). A New Look at the Statistical Model Identification. IEEE Transactions on Automatic Control, 19(6), 716–723. doi:10.1109/TAC.1974.1100705.

Gamerman, D., & Lopes, H. F. (2006). Markov Chain Monte Carlo. Chapman and Hall/CRC, New York, United States. doi:10.1201/9781482296426.


Full Text: PDF

DOI: 10.28991/ESJ-2025-09-01-011

Refbacks

  • There are currently no refbacks.