Gender Differences in Academic Staff Performance: An Advanced Analysis Using PLS-SEM in Higher Education

Ghilan Al-Madhagy Taufiq Hail, Shafiz Affendi Mohd Yusof, Mohanaad Shakir, Maryam Juma Al Farsi, Ibrahim R. Al-Shamsi, Adel Sarea

Abstract


This study aims to comprehensively explore the intricate dynamics among positive and negative emotions, self-efficacy, and task performance within the unique context of the Covid-19 pandemic in Bahrain, specifically placing emphasis on potential gender-related distinctions within the proposed relationships. The ongoing pandemic accentuates the need to investigate the interplay between emotional states, self-efficacy beliefs, and task performance in academic and teaching domains, especially considering potential gender variations within the framework of a society promoting gender equality. Employing a quantitative survey instrument and rigorous statistical techniques, the study validates its proposed model through indicators such as the coefficient of determination (R²) and predictive relevance (Q²). The diverse sample comprises academic and teaching staff of both genders from Bahrain. Advanced statistical methodologies, including Measurement Invariance (MICOM) and Multigroup Analysis (MGA) facilitated by SmartPLS PLS-SEM, provide deeper insights into gender disparities. Significantly contributing to existing knowledge, this paper elucidates the complex relationships among emotions, self-efficacy, and task performance amid a crisis, with a distinctive focus on meticulously investigating gender differences. The study underscores the consistent positive impact of positive emotions on task performance across genders in Bahrain. Recommendations advocate for prioritizing support for academic and teaching staff during crises, emphasizing the positive impact on academic outcomes. Future research should explore demographic intricacies and potential mediating or moderating factors, deepening the comprehension of these complex dynamics. Highlighting the cascading impact of prioritizing the well-being and morale of academic and teaching staff, the study envisions a positive transformation resonating across various facets of society, extending beyond the confines of academia.

 

Doi: 10.28991/ESJ-2024-SIED1-09

Full Text: PDF


Keywords


Bahrain Higher Education; Gender Dif-ferences; MICOM; Multi-Group Analysis; Performance; PLS-SEM; Positive and Negative Feelings; Self-Efficacy.

References


Taufiq Hail, G. A.-M. (2020). Educational Learning and Teaching Methods’ Challenges during COVID-19 Outbreak and a Sudden Transformation Towards Totally Digitizing Education. International Journal of Education and Science, 3(2), 56-57. doi:10.26697/ijes.2020.2.39.

Mukhopadhyay, U. (2023). Impact of COVID-19 pandemic on academic performance and work–life balance of women academicians. Asian Journal of Social Science, 51(1), 62–70. doi:10.1016/j.ajss.2022.07.003.

Aljahromi, D. (2020). Towards the provision of effective interaction in post Covid-19 e-learning contexts: Enhancing e-interactions on the LMS’s discussion boards. Proceedings of the International Conference on e-Learning, ICEL, Vols. 2020-December, 98–103. IEEE, Sakheer. doi:10.1109/econf51404.2020.9385502.

Taufiq-Hail, G. A. M., Aljahromi, Di., Sarea, A., & Kostikova, I. (2021). Academic Staff Perceptions on Students’ Traditional Assessment Transformations towards Online Evaluation during COVID-19 Pandemic in Higher Education: A Preliminary Study from Two Diverse Cultures. In 2021 Sustainable Leadership and Academic Excellence International Conference, SLAE 2021, 16–25. doi:10.1109/SLAE54202.2021.9686904.

Saw, G. K., Chang, C. N., & Lin, S. (2023). Gender disparities in remote teaching readiness and mental health problems among university faculty during the COVID-19 pandemic. Educational and Developmental Psychologist, 40(1), 131–140. doi:10.1080/20590776.2022.2108697.

Bloshchynskyi, I., Bahrii, H., Nanivska, L., Tsviak, L., Isaieva, I., Skyba, K., Pilishek, S., Moroz, N., Herasimova, O., Yamkova, V., & Mishchynska, I. (2022). Gender Characteristics of Individual’s Linguistic Behavior in the Context of Future Translators’ Professional Training. Emerging Science Journal, 6(Special Issue), 199–208. doi:10.28991/ESJ-2022-SIED-014.

Rokach, A. (2018). The effect of gender and culture on loneliness: A mini review. Emerging Science Journal, 2(2), 59–64. doi:10.28991/esj-2018-01128.

Lobos, K., Cobo-Rendón, R., Sáez, F., Mella, J., & Cisternas, N. (2023). Return to Face-to-Face Classrooms in Higher Education: Students Experiences in Chile, Venezuela, and Ecuador. Emerging Science Journal, 7(Special Issue 2), 217–237. doi:10.28991/ESJ-2023-SIED2-017.

Corbett, L., Bauman, A., Peralta, L. R., Okely, A. D., & Phongsavan, P. (2024). Lifestyle and work-related correlates of psychosocial health among Australian teachers: a cross-sectional study. Journal of Public Health (Germany), 32(6), 999–1009. doi:10.1007/s10389-023-01874-9.

García-Fernández, L., Romero-Ferreiro, V., Padilla, S., David López-Roldán, P., Monzó-García, M., & Rodriguez-Jimenez, R. (2021). Gender differences in emotional response to the COVID-19 outbreak in Spain. Brain and Behavior, 11(1), 1934. doi:10.1002/brb3.1934.

Hamid, A. A. M., & Abdullah, A. S. (2020). Job distress and burnout among Tanzanian and Sudanese health professionals: a comparative study. South African Journal of Psychology, 50(3), 411–424. doi:10.1177/0081246319898054.

Karaboga, T., Erdal, N., Karaboga, H. A., & Tatoglu, E. (2023). Creativity as a mediator between personal accomplishment and task performance: A multigroup analysis based on gender during the COVID-19 pandemic. Current Psychology, 42(15), 12517–12529. doi:10.1007/s12144-021-02510-z.

Qian, Y., & Fan, W. (2024). Stressful life events and depressive symptoms during COVID-19: A gender comparison. British Journal of Sociology, 75(1), 38–47. doi:10.1111/1468-4446.13067.

André, S., & van der Zwan, R. (2023). The influence of the COVID-19 pandemic on changes in perceived work pressure for Dutch mothers and fathers. Gender, Work and Organization, 30(3), 1015–1034. doi:10.1111/gwao.12951.

Hess, U., Senecal, S., Kirouac, G., Herrera, P., Philippot, P., & Kleck, R. E. (2000). Emotional expressivity in men and women: Stereotypes and self-perceptions. Cognition and Emotion, 14(5), 609–642. doi:10.1080/02699930050117648.

Ross, C. E., & Willigen, M. Van. (1996). Gender, Parenthood, and Anger. Journal of Marriage and the Family, 58(3), 572. doi:10.2307/353718.

Simon, R. W., & Nath, L. E. (2004). Gender and emotion in the United States: Do men and women differ in self-reports of feelings and expressive behavior? American Journal of Sociology, 109(5), 1137–1176. doi:10.1086/382111.

Ali, N., Nitschke, J. P., Cooperman, C., Baldwin, M. W., & Pruessner, J. C. (2020). Systematic manipulations of the biological stress systems result in sex-specific compensatory stress responses and negative mood outcomes. Neuropsychopharmacology, 45(10), 1672–1680. doi:10.1038/s41386-020-0726-8.

Bangasser, D. A., & Wicks, B. (2017). Sex-specific mechanisms for responding to stress. Journal of Neuroscience Research, 95(1–2), 75–82. doi:10.1002/jnr.23812.

Pruessner, J. C. (2018). The interplay of sex and gender on the reactivity of the endocrine stress axis in humans. Current Opinion in Behavioral Sciences, 23, 191–195. doi:10.1016/j.cobeha.2018.08.003.

Taylor, C. L., Ivcevic, Z., Moeller, J., Menges, J. I., Reiter-Palmon, R., & Brackett, M. A. (2022). Gender and Emotions at Work: Organizational Rank Has Greater Emotional Benefits for Men than Women. Sex Roles, 86(1–2), 127–142. doi:10.1007/s11199-021-01256-z.

Abbruzzese, L., Magnani, N., Robertson, I. H., & Mancuso, M. (2019). Age and gender differences in emotion recognition. Frontiers in Psychology, 10(Octber), 1-15. doi:10.3389/fpsyg.2019.02371.

Deng, Y., Chang, L., Yang, M., Huo, M., & Zhou, R. (2016). Gender differences in emotional response: Inconsistency between experience and expressivity. PLoS ONE, 11(6), 158666. doi:10.1371/journal.pone.0158666.

Lausen, A., & Schacht, A. (2018). Gender differences in the recognition of vocal emotions. Frontiers in Psychology, 9(June), 1-22. doi:10.3389/fpsyg.2018.00882.

Storek, J., & Furnham, A. (2014). Gender and task confidence as predictors of the Domain-Masculine Intelligence Type (DMIQ). Personality and Individual Differences, 69, 43–49. doi:10.1016/j.paid.2014.05.006.

Deole, S. S., Deter, M., & Huang, Y. (2023). Home sweet home: Working from home and employee performance during the COVID-19 pandemic in the UK. Labour Economics, 80, 102295. doi:10.1016/j.labeco.2022.102295.

Stengård, J., Mellner, C., Toivanen, S., & Nyberg, A. (2022). Gender Differences in the Work and Home Spheres for Teachers, and Longitudinal Associations with Depressive Symptoms in a Swedish Cohort. Sex Roles, 86(3–4), 159–178. doi:10.1007/s11199-021-01261-2.

Wang, Y., Xia, M., Guo, W., Xu, F., & Zhao, Y. (2023). Academic performance under COVID-19: The role of online learning readiness and emotional competence. Current Psychology, 42(34), 30562–30575. doi:10.1007/s12144-022-02699-7.

Hamadeh, R. R., AlSabbagh, M., Bugawa, A. M., Kamal, A., Ali, F., Al Bufalasa, G. A., & AlShaibani, T. (2022). The impact of the COVID-19 pandemic in higher education: a gender perspective. Arab Gulf Journal of Scientific Research, 40(4), 424–439. doi:10.1108/AGJSR-07-2022-0104.

Taufiq-Hail, G. A. M., Sarea, A., & Hawaldar, I. T. (2021). The impact of self-efficacy on feelings and task performance of academic and teaching staff in bahrain during covid-19: Analysis by sem and ann. Journal of Open Innovation: Technology, Market, and Complexity, 7(4), 224. doi:10.3390/joitmc7040224.

Zia, A. (2020). Exploring factors influencing online classes due to social distancing in COVID-19 pandemic: a business students perspective. International Journal of Information and Learning Technology, 37(4), 197–211. doi:10.1108/IJILT-05-2020-0089.

Tsui, A. B. M., Chan, C. K. K., Harfitt, G., & Leung, P. (2020). Crisis and opportunity in teacher preparation in the pandemic: exploring the “adjacent possible.” Journal of Professional Capital and Community, 5(3–4), 237–245. doi:10.1108/JPCC-07-2020-0061.

Lopes de Sousa Jabbour, A. B., Chiappetta Jabbour, C. J., Hingley, M., Vilalta-Perdomo, E. L., Ramsden, G., & Twigg, D. (2020). Sustainability of supply chains in the wake of the coronavirus (COVID-19/SARS-CoV-2) pandemic: lessons and trends. Modern Supply Chain Research and Applications, 2(3), 117–122. doi:10.1108/mscra-05-2020-0011.

López López, L. (Licho), McCaw, C. T., Di Biase, R., McKernan, A., Rudolph, S., Galatis, A., Dulfer, N., Gerrard, J., McKinley, E., McLeod, J., & Rizvi, F. (2020). The quarantine archives: educators in “social isolation.” History of Education Review, 49(2), 195–213. doi:10.1108/HER-05-2020-0028.

Alawamleh, M., Al-Twait, L. M., & Al-Saht, G. R. (2022). The effect of online learning on communication between instructors and students during Covid-19 pandemic. Asian Education and Development Studies, 11(2), 380–400. doi:10.1108/AEDS-06-2020-0131.

Hampel, R., & Stickler, U. (2005). New skills for new classrooms: Training tutors to teach languages online. Computer Assisted Language Learning, 18(4), 311–326. doi:10.1080/09588220500335455.

Easton, S. S. (2003). Clarifying the instructor’s role in online distance learning. Communication Education, 52(2), 87–105. doi:10.1080/03634520302470.

Biddle, B. (1986). Recent Developments in Role Theory. Annual Review of Sociology, 12(1), 67–92. doi:10.1146/annurev.soc.12.1.67.

Zhang, Y. G., Dang, M. Y., & Chen, H. (2020). An Explorative Study on the Virtual World: Investigating the Avatar Gender and Avatar Age Differences in their Social Interactions for Help-Seeking. Information Systems Frontiers, 22(4), 911–925. doi:10.1007/s10796-019-09904-2.

Plant, E. A., Hyde, J. S., Keltner, D., & Devine, P. G. (2000). The gender stereotyping of emotions. Psychology of Women Quarterly, 24(1), 81–92. doi:10.1111/j.1471-6402.2000.tb01024.x.

Shields, S. A. (2013). Gender and Emotion: What We Think We Know, What We Need to Know, and Why It Matters. Psychology of Women Quarterly, 37(4), 423–435. doi:10.1177/0361684313502312.

Wood, W., & Eagly, A. H. (2002). A cross-cultural analysis of the behavior of women and men: Implications for the origins of sex differences. Psychological Bulletin, 128(5), 699–727. doi:10.1037/0033-2909.128.5.699.

Grossman, M., & Wood, W. (1993). Sex Differences in Intensity of Emotional Experience: A Social Role Interpretation. Journal of Personality and Social Psychology, 65(5), 1010–1022. doi:10.1037/0022-3514.65.5.1010.

PLUTCHIK, R. (1980). a General Psychoevolutionary Theory of Emotion. In Theories of Emotion. Theor. Emot., Elsevier. doi:10.1016/b978-0-12-558701-3.50007-7.

Brody, L. R. (1985). Gender differences in emotional development: A review of theories and research. Journal of Personality, 53(2), 102–149. doi:10.1111/j.1467-6494.1985.tb00361.x.

Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). User acceptance of information technology: Toward a unified view. MIS Quarterly: Management Information Systems, 27(3), 425–478. doi:10.2307/30036540.

Venkatesh, V., Thong, J. Y. L., & Xu, X. (2012). Consumer acceptance and use of information technology: Extending the unified theory of acceptance and use of technology. MIS Quarterly: Management Information Systems, 36(1), 157–178. doi:10.2307/41410412.

Yuan, S., Liu, Y., Yao, R., & Liu, J. (2016). An investigation of users’ continuance intention towards mobile banking in China. Information Development, 32(1), 20–34. doi:10.1177/0266666914522140.

Hew, J. J., Lee, V. H., Ooi, K. B., & Wei, J. (2015). What catalyses mobile apps usage intention: An empirical analysis. Industrial Management and Data Systems, 115(7), 1269–1291. doi:10.1108/IMDS-01-2015-0028.

Wong, C. H., Tan, G. W. H., Loke, S. P., & Ooi, K. B. (2014). Mobile TV: A new form of entertainment? Industrial Management and Data Systems, 114(7), 1050–1067. doi:10.1108/IMDS-05-2014-0146.

Ohlott, P. J., Ruderman, M. N., & McCauley, C. D. (1994). Gender Differences in Managers’ Developmental Job Experiences. Academy of Management Journal, 37(1), 46–67. doi:10.2307/256769.

Woodall, J., Edwards, C., & Welchman, R. (1997). Organizational restructuring and the achievement of an equal opportunity culture. Gender, Work and Organization, 4(1), 2–12. doi:10.1111/1468-0432.t01-1-00019.

Singh, S., Bhutani, S., & Fatima, H. (2020). Surviving the stigma: lessons learnt for the prevention of COVID-19 stigma and its mental health impact. Mental Health and Social Inclusion, 24(3), 145–149. doi:10.1108/MHSI-05-2020-0030.

Kelly, M. M., Tyrka, A. R., Anderson, G. M., Price, L. H., & Carpenter, L. L. (2008). Sex differences in emotional and physiological responses to the Trier Social Stress Test. Journal of Behavior Therapy and Experimental Psychiatry, 39(1), 87–98. doi:10.1016/j.jbtep.2007.02.003.

Goldfarb, E. V., Seo, D., & Sinha, R. (2019). Sex differences in neural stress responses and correlation with subjective stress and stress regulation. Neurobiology of Stress, 11, 100177. doi:10.1016/j.ynstr.2019.100177.

Bilodeau, J., Marchand, A., & Demers, A. (2020). Psychological distress inequality between employed men and women: A gendered exposure model. SSM - Population Health, 11, 100626. doi:10.1016/j.ssmph.2020.100626.

Calvarese, M. (2015). The effect of gender on stress factors: An exploratory study among university students. Social Sciences, 4(4), 1177–1184. doi:10.3390/socsci4041177.

Bodenmann, G., Meuwly, N., Germann, J., Nussbeck, F. W., Heinrichs, M., & Bradbury, T. N. (2015). Effects of Stress on the Social Support Provided by Men and Women in Intimate Relationships. Psychological Science, 26(10), 1584–1594. doi:10.1177/0956797615594616.

Youssef, F. F., Bachew, R., Bissessar, S., Crockett, M. J., & Faber, N. S. (2018). Sex differences in the effects of acute stress on behavior in the ultimatum game. Psychoneuroendocrinology, 96, 126–131. doi:10.1016/j.psyneuen.2018.06.012.

Rossi, R., Socci, V., Talevi, D., Mensi, S., Niolu, C., Pacitti, F., Di Marco, A., Rossi, A., Siracusano, A., & Di Lorenzo, G. (2020). COVID-19 Pandemic and Lockdown Measures Impact on Mental Health Among the General Population in Italy. Frontiers in Psychiatry, 11. doi:10.3389/fpsyt.2020.00790.

Sobregrau Sangrà, P., Aguiló Mir, S., Castro Ribeiro, T., Esteban-Sepúlveda, S., García Pagès, E., López Barbeito, B., Pomar Moya-Prats, J. L., Pintor Pérez, L., & Aguiló Llobet, J. (2022). Mental health assessment of Spanish healthcare workers during the SARS-CoV-2 pandemic. A cross-sectional study. Comprehensive Psychiatry, 112, 152278. doi:10.1016/j.comppsych.2021.152278.

Stella, M., Restocchi, V., & Deyne, S. De. (2020). #Lockdown: Network-enhanced emotional profiling in the time of covid-19. Big Data and Cognitive Computing, 4(2), 1–23. doi:10.3390/bdcc4020014.

Wang, C., Pan, R., Wan, X., Tan, Y., Xu, L., Ho, C. S., & Ho, R. C. (2020). Immediate psychological responses and associated factors during the initial stage of the 2019 coronavirus disease (COVID-19) epidemic among the general population in China. International Journal of Environmental Research and Public Health, 17(5)m 1729. doi:10.3390/ijerph17051729.

Shahrour, G., & Dardas, L. A. (2020). Acute stress disorder, coping self-efficacy and subsequent psychological distress among nurses amid COVID-19. Journal of Nursing Management, 28(7), 1686–1695. doi:10.1111/jonm.13124.

Liu, N., Zhang, F., Wei, C., Jia, Y., Shang, Z., Sun, L., Wu, L., Sun, Z., Zhou, Y., Wang, Y., & Liu, W. (2020). Prevalence and predictors of PTSS during COVID-19 outbreak in China hardest-hit areas: Gender differences matter. Psychiatry Research, 287, 112921. doi:10.1016/j.psychres.2020.112921.

Olaseni, A. O., Akinsola, O. S., Agberotimi, S. F., & Oguntayo, R. (2020). Psychological distress experiences of Nigerians during Covid-19 pandemic; the gender difference. Social Sciences and Humanities Open, 2(1), 100052. doi:10.1016/j.ssaho.2020.100052.

van der Vegt, I., & Kleinberg, B. (2020). Women Worry About Family, Men About the Economy: Gender Differences in Emotional Responses to COVID-19. In S. Aref, K. Bontcheva, M. Braghieri, F. Dignum, F. Giannotti, F. Grisolia, & D. Pedreschi (Eds.), Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics): Vol. 12467 LNCS, 397–409. doi:10.1007/978-3-030-60975-7_29.

Prowse, R., Sherratt, F., Abizaid, A., Gabrys, R. L., Hellemans, K. G. C., Patterson, Z. R., & McQuaid, R. J. (2021). Coping With the COVID-19 Pandemic: Examining Gender Differences in Stress and Mental Health Among University Students. Frontiers in Psychiatry, 12. doi:10.3389/fpsyt.2021.650759.

Elliott, M., & Blithe, S. J. (2020). Gender Inequality, Stress Exposure, and Well-Being among Academic Faculty. International Journal of Higher Education, 10(2), 240. doi:10.5430/ijhe.v10n2p240.

García-González, M. A., Torrano, F., & García-González, G. (2020). Analysis of stress factors for female professors at online universities. International Journal of Environmental Research and Public Health, 17(8), 2958. doi:10.3390/ijerph17082958.

Bandura, A. (1986). The Explanatory and Predictive Scope of Self-Efficacy Theory. Journal of Social and Clinical Psychology, 4(3), 359–373. doi:10.1521/jscp.1986.4.3.359.

Taufiq-Hail, G. A. M., & Sarea, A. (2021). An Empirical Evaluation of the Credibility, Trust Perceptions, and Compatibility with Cloud-Based Services: The Case of Higher Education in Malaysia. In A.-E. Hassanien, K.-C. Chang, T. Mincong, & A. M. Learn (Eds.), Advances in Intelligent Systems and Computing, 1339, 753–773. doi:10.1007/978-3-030-69717-4_70.

Arslan, M., & Roudaki, J. (2019). Examining the role of employee engagement in the relationship between organisational cynicism and employee performance. International Journal of Sociology and Social Policy, 39(1–2), 118–137. doi:10.1108/IJSSP-06-2018-0087.

Sonnentag, S., & Frese, M. (2002). Performance Concepts and Performance Theory. In S. Sonnentag (Ed.), Psychological Management of Individual Performance, 1–25. doi:10.1002/0470013419.ch1.

Cronin, B. (1982). Performance Measurement and Information Management. Aslib Proceedings, 34(5), 227–236. doi:10.1108/eb050844.

Koopmans, L., Bernaards, C. M., Hildebrandt, V. H., De Vet, H. C. W., & Van Der Beek, A. J. (2014). Construct validity of the individual work performance questionnaire. Journal of Occupational and Environmental Medicine, 56(3), 331–337. doi:10.1097/JOM.0000000000000113.

Saleem, M. A., Bhutta, Z. M., Nauman, M., & Zahra, S. (2019). Enhancing performance and commitment through leadership and empowerment: An emerging economy perspective. International Journal of Bank Marketing, 37(1), 303–322. doi:10.1108/IJBM-02-2018-0037.

Nes, L. S., & Optimism. (2016). Stress: Concepts, Cognition, Emotion, and Behavior. Stress: Concepts, Cognition, Emotion, and Behavior, 405–411. doi:10.1016/c2013-0-12842-5.

Solberg Nes, L., & Segerstrom, S. C. (2006). Dispositional optimism and coping: A meta-analytic review. Personality and Social Psychology Review, 10(3), 235–251. doi:10.1207/s15327957pspr1003_3.

Arslan, G., Yıldırım, M., Tanhan, A., Buluş, M., & Allen, K. A. (2021). Coronavirus Stress, Optimism-Pessimism, Psychological Inflexibility, and Psychological Health: Psychometric Properties of the Coronavirus Stress Measure. International Journal of Mental Health and Addiction, 19(6), 2423–2439. doi:10.1007/s11469-020-00337-6.

Tanhan, A. (2019). Acceptance and commitment therapy with ecological systems theory: Addressing muslim mental health issues and wellbeing. Journal of Positive Psychology and Wellbeing, 3(2), 197–219. doi:10.47602/jpsp.v3i2.172.

Yao, Z., Zhang, X., Luo, J., & Huang, H. (2020). Offense is the best defense: the impact of workplace bullying on knowledge hiding. Journal of Knowledge Management, 24(3), 675–695. doi:10.1108/JKM-12-2019-0755.

Zhang, J., Wu, W., Zhao, X., & Zhang, W. (2020). Recommended psychological crisis intervention response to the 2019 novel coronavirus pneumonia outbreak in China: A model of West China Hospital. Precision Clinical Medicine, 3(1), 3–8. doi:10.1093/pcmedi/pbaa006.

Bao, Y., Sun, Y., Meng, S., Shi, J., & Lu, L. (2020). 2019-nCoV epidemic: address mental health care to empower society. The Lancet, 395(10224), e37–e38. doi:10.1016/S0140-6736(20)30309-3.

Bandura, A. (1977). Self-efficacy: Toward a unifying theory of behavioral change. Psychological Review, 84(2), 191–215. doi:10.1037/0033-295X.84.2.191.

Bandura, A., & Watts, R. E. (1996). Self-Efficacy in Changing Societies. Journal of Cognitive Psychotherapy, 10(4), 313. doi:10.1891/0889-8391.10.4.313.

Schunk, D. H. (1995). Self-efficacy, motivation, and performance. Journal of Applied Sport Psychology, 7(2), 112–137. doi:10.1080/10413209508406961.

Schmidt, A. M., & DeShon, R. P. (2010). The Moderating Effects of Performance Ambiguity on the Relationship Between Self-Efficacy and Performance. Journal of Applied Psychology, 95(3), 572–581. doi:10.1037/a0018289.

Hair Jr, J. F., Sarstedt, M., Ringle, C. M., & Gudergan, S. P. (2018). Advanced issues in partial least squares structural equation modeling. SAGE Publications, California, United States.

Erdfelder, E., FAul, F., Buchner, A., & Lang, A. G. (2009). Statistical power analyses using G*Power 3.1: Tests for correlation and regression analyses. Behavior Research Methods, 41(4), 1149–1160. doi:10.3758/BRM.41.4.1149.

Cohen, J. (1992). Quantitative methods in psychology. Psychological Bulletin, 112(1), 155–159.

Podsakoff, P. M., MacKenzie, S. B., Lee, J. Y., & Podsakoff, N. P. (2003). Common Method Biases in Behavioral Research: A Critical Review of the Literature and Recommended Remedies. Journal of Applied Psychology, 88(5), 879–903. doi:10.1037/0021-9010.88.5.879.

Hair, J. F., Ringle, C. M., & Sarstedt, M. (2011). PLS-SEM: Indeed a silver bullet. Journal of Marketing Theory and Practice, 19(2), 139–152. doi:10.2753/MTP1069-6679190202.

Hair, J. F., Sarstedt, M., Hopkins, L., & Kuppelwieser, V. G. (2014). Partial least squares structural equation modeling (PLS-SEM): An emerging tool in business research. European Business Review, 26(2), 106–121. doi:10.1108/EBR-10-2013-0128.

Henseler, J., Hubona, G., & Ray, P. A. (2016). Using PLS path modeling in new technology research: Updated guidelines. Industrial Management and Data Systems, 116(1), 2–20. doi:10.1108/IMDS-09-2015-0382.

Chin, W., Cheah, J. H., Liu, Y., Ting, H., Lim, X. J., & Cham, T. H. (2020). Demystifying the role of causal-predictive modeling using partial least squares structural equation modeling in information systems research. Industrial Management and Data Systems, 120(12), 2161–2209. doi:10.1108/IMDS-10-2019-0529.

Sharma, P. N., Liengaard, B. D., Hair, J. F., Sarstedt, M., & Ringle, C. M. (2023). Predictive model assessment and selection in composite-based modeling using PLS-SEM: extensions and guidelines for using CVPAT. European Journal of Marketing, 57(6), 1662–1677. doi:10.1108/EJM-08-2020-0636.

Hair, J., & Alamer, A. (2022). Partial Least Squares Structural Equation Modeling (PLS-SEM) in second language and education research: Guidelines using an applied example. Research Methods in Applied Linguistics, 1(3), 100027. doi:10.1016/j.rmal.2022.100027.

Taylor, S., & Todd, P. A. (1995). Understanding information technology usage: A test of competing models. Information Systems Research, 6(2), 144–176. doi:10.1287/isre.6.2.144.

Zolait, A. H. S. (2014). The nature and components of perceived behavioural control as an element of theory of planned behaviour. Behaviour and Information Technology, 33(1), 65–85. doi:10.1080/0144929X.2011.630419.

Ringle, C. M., Wende, S., & Becker, J. M. S. (2015). SmartPLS GmbH: Boenningstedt. Hournal od Service Science and Management, Germany.

Chin, W. W. (1998). The partial least squares approach to structural equation modeling. Modern methods for business research, 295(2), 295-336.

Ramayah, T., Soto-Acosta, P., Colomo-Palacios, R., Gopi, M., & Popa, S. (2014). Explaining the adoption of Internet stock trading in Malaysia: Comparing models. Asian Journal of Technology Innovation, 22(1), 131–151. doi:10.1080/19761597.2013.873110.

Fornell, C., & Larcker, D. F. (1981). Evaluating Structural Equation Models with Unobservable Variables and Measurement Error. Journal of Marketing Research, 18(1), 39. doi:10.2307/3151312.

Sarstedt, M., Ringle, C. M., Smith, D., Reams, R., & Hair, J. F. (2014). Partial least squares structural equation modeling (PLS-SEM): A useful tool for family business researchers. Journal of Family Business Strategy, 5(1), 105–115. doi:10.1016/j.jfbs.2014.01.002.

Zimmerman, B. J., Bandura, A., & Martinez-Pons, M. (1992). Self-Motivation for Academic Attainment: The Role of Self-Efficacy Beliefs and Personal Goal Setting. American Educational Research Journal, 29(3), 663–676. doi:10.3102/00028312029003663.

Lee, P. C., & Mao, Z. (2016). The relation among self-efficacy, learning approaches, and academic performance: An exploratory study. Journal of Teaching in Travel and Tourism, 16(3), 178–194. doi:10.1080/15313220.2015.1136581.

De Pater, I. E., Van Vianen, A. E. M., Fischer, A. H., & Van Ginkel, W. P. (2009). Challenging experiences: Gender differences in task choice. Journal of Managerial Psychology, 24(1), 4–28. doi:10.1108/02683940910922519.

Henseler, J. (2017). Partial least squares path modeling. Advanced methods for modeling markets, 361-381. doi:10.1007/978-3-319-53469-5_12

Aali, H. Al, & Aljahromi, D. (2021). An Examination of Leadership Styles of Women in Academia in the Kingdom of Bahrain. Sustainable Leadership and Academic Excellence International Conference, 1–7. doi:10.1109/SLAE54202.2021.9788071.

Henseler, J. (2007). A New and Simple Approach to Multi-group Analysis in Partial Least Squares Path Modeling. Proceedings of PLS’07: 5th International Symposium on PLS and Related Methods, 104–107.

Henseler, J., & Fassott, G. (2010). Testing Moderating Effects in PLS Path Models: An Illustration of Available Procedures. In V. E. Vinzi, W. W. Chin, J. Henseler, & H. Wang (Eds.), Handbook of Partial Least Squares, 713–735. doi:10.1007/978-3-540-32827-8_31.


Full Text: PDF

DOI: 10.28991/ESJ-2024-SIED1-09

Refbacks

  • There are currently no refbacks.