Taking Advantage of Disposal Bamboo Chopsticks to Produce Biochar for Greenhouse Crop Cultivation

Saowanee Wijitkosum, Thavivongse Sriburi, Luechai Krutnoi


Biochar is a value-added product that can be used for many purposes, particularly for environmental and agricultural purposes. In this study, pyrolysis at 450–500 °C was used to upgrade urban waste such as disposable bamboo chopsticks (DBCs) into biochar. The properties of DBC biochar were analyzed, and the biochar was subsequently used to cultivate Romaine lettuce to assess its potential as a soil amendment. Its properties, including specific surface area (SSA), pore size, pore volume, pH, cation exchange capacity (CEC), contents of carbon (C), hydrogen (H), nitrogen (N), oxygen (O), macronutrient content, and the atomic ratio of H/C, O/C, (O+N)/C, and C/N, were analyzed. The experimental pots consisted of four treatments, each with ten replicates: unamended soil (TC), soil amended with 10% (w/w) vermicompost (TV), soil amended with 10% vermicompost mixed with 1.5% biochar (TVB1.5), and soil amended with 10% vermicompost mixed with 2.5% biochar (TVB2.5). Fundamental physicochemical soil properties and plant yield (plant height, leaf width, number of leaves, and fresh weight) were investigated. The results indicated that the DBC biochar was neutral (pH 6.80) and had a high CEC (10.86 cmol/kg), 66.80% C, 3.76% H, 25.93% O, and 0.61% N. It had mesopores (39.077 Å), a large SSA (0.542 m2/g), and a pore volume of 0.005 cc/g. The biochar exhibited high aromaticity and hydrophobicity. Based on these results, the DBC biochar has the potential to be used as a soil amendment: it significantly enhances soil quality and increases plant yields. The application of 2.5% biochar resulted in the highest yield.


Doi: 10.28991/ESJ-2024-08-03-07

Full Text: PDF


Upcycling; Biochar; Soil Amendment; Waste-to-Resource; Enhanced Yield.


The World Bank. (2019). Solid Waste Management. The World Bank, Washington, United States. Available online: http://www.worldbank.org/en/topic/urbandevelopment/brief/solid-waste-management (accessed on May 2024).

Hoornweg, D., & Bhada-Tata, P. (2012). What a waste: a global review of solid waste management. The World Bank, Washington, United States.

Wijitkosum, S. (2023). Repurposing Disposable Bamboo Chopsticks Waste as Biochar for Agronomical Application. Energies, 16(2), 771. doi:10.3390/en16020771.

Wijitkosum, S., & Sriburi, T. (2023). Aromaticity, polarity, and longevity of biochar derived from disposable bamboo chopsticks waste for environmental application. Heliyon, 9(9). doi:10.1016/j.heliyon.2023.e19831.

Ghodake, G. S., Shinde, S. K., Kadam, A. A., Saratale, R. G., Saratale, G. D., Kumar, M., Palem, R. R., AL-Shwaiman, H. A., Elgorban, A. M., Syed, A., & Kim, D. Y. (2021). Review on biomass feedstocks, pyrolysis mechanism and physicochemical properties of biochar: State-of-the-art framework to speed up vision of circular bioeconomy. Journal of Cleaner Production, 297, 126645. doi:10.1016/j.jclepro.2021.126645.

Qin, F., Zhang, C., Zeng, G., Huang, D., Tan, X., & Duan, A. (2022). Lignocellulosic biomass carbonization for biochar production and characterization of biochar reactivity. Renewable and Sustainable Energy Reviews, 157, 112056. doi:10.1016/j.rser.2021.112056.

Jafri, N., Wong, W. Y., Doshi, V., Yoon, L. W., & Cheah, K. H. (2018). A review on production and characterization of biochars for application in direct carbon fuel cells. Process Safety and Environmental Protection, 118, 152–166. doi:10.1016/j.psep.2018.06.036.

Mukherjee, A., Patra, B. R., Podder, J., & Dalai, A. K. (2022). Synthesis of Biochar from Lignocellulosic Biomass for Diverse Industrial Applications and Energy Harvesting: Effects of Pyrolysis Conditions on the Physicochemical Properties of Biochar. Frontiers in Materials, 9. doi:10.3389/fmats.2022.870184.

Mao, J., Zhang, K., & Chen, B. (2019). Linking hydrophobicity of biochar to the water repellency and water holding capacity of biochar-amended soil. Environmental Pollution, 253, 779–789. doi:10.1016/j.envpol.2019.07.051.

Shaaban, M., Van Zwieten, L., Bashir, S., Younas, A., Núñez-Delgado, A., Chhajro, M. A., Kubar, K. A., Ali, U., Rana, M. S., Mehmood, M. A., & Hu, R. (2018). A concise review of biochar application to agricultural soils to improve soil conditions and fight pollution. Journal of Environmental Management, 228, 429–440. doi:10.1016/j.jenvman.2018.09.006.

Agegnehu, G., Srivastava, A. K., & Bird, M. I. (2017). The role of biochar and biochar-compost in improving soil quality and crop performance: A review. Applied Soil Ecology, 119, 156–170. doi:10.1016/j.apsoil.2017.06.008.

Dai, Y., Zheng, H., Jiang, Z., & Xing, B. (2020). Combined effects of biochar properties and soil conditions on plant growth: A meta-analysis. Science of the Total Environment, 713, 136635. doi:10.1016/j.scitotenv.2020.136635.

Tu, P., Zhang, G., Wei, G., Li, J., Li, Y., Deng, L., & Yuan, H. (2022). Influence of pyrolysis temperature on the physicochemical properties of biochars obtained from herbaceous and woody plants. Bioresources and Bioprocessing, 9(1), 131. doi:10.1186/s40643-022-00618-z.

Wijitkosum, S. (2022). Biochar derived from agricultural wastes and wood residues for sustainable agricultural and environmental applications. International Soil and Water Conservation Research, 10(2), 335–341. doi:10.1016/j.iswcr.2021.09.006.

Dhyani, V., & Bhaskar, T. (2018). A comprehensive review on the pyrolysis of lignocellulosic biomass. Renewable Energy, 129, 695–716. doi:10.1016/j.renene.2017.04.035.

Amalina, F., Razak, A. S. A., Krishnan, S., Sulaiman, H., Zularisam, A. W., & Nasrullah, M. (2022). Biochar production techniques utilizing biomass waste-derived materials and environmental applications – A review. Journal of Hazardous Materials Advances, 7. doi:10.1016/j.hazadv.2022.100134.

El-Gamal, E., Saleh, M., Elsokkary, I., Rashad, M., & Abd El-Latif, M. M. (2017). Comparison between Properties of Biochar Produced by Traditional and Controlled Pyrolysis. Alexandria Science Exchange Journal: An International Quarterly Journal of Science Agricultural Environments, 38(July-September), 412–425. doi:10.21608/asejaiqjsae.2017.3720.

Wang, K., Peng, N., Lu, G., & Dang, Z. (2020). Effects of Pyrolysis Temperature and Holding Time on Physicochemical Properties of Swine-Manure-Derived Biochar. Waste and Biomass Valorization, 11(2), 613–624. doi:10.1007/s12649-018-0435-2.

Zhao, S. X., Ta, N., & Wang, X. D. (2017). Effect of temperature on the structural and physicochemical properties of biochar with apple tree branches as feedstock material. Energies, 10(9), 1293. doi:10.3390/en10091293.

Li, L., Long, A., Fossum, B., & Kaiser, M. (2023). Effects of pyrolysis temperature and feedstock type on biochar characteristics pertinent to soil carbon and soil health: A meta-analysis. Soil Use and Management, 39(1), 43–52. doi:10.1111/sum.12848.

Ippolito, J. A., Cui, L., Kammann, C., Wrage-Mönnig, N., Estavillo, J. M., Fuertes-Mendizabal, T., Cayuela, M. L., Sigua, G., Novak, J., Spokas, K., & Borchard, N. (2020). Feedstock choice, pyrolysis temperature and type influence biochar characteristics: a comprehensive meta-data analysis review. Biochar, 2(4), 421–438. doi:10.1007/s42773-020-00067-x.

Tomczyk, A., Sokołowska, Z., & Boguta, P. (2020). Biochar physicochemical properties: pyrolysis temperature and feedstock kind effects. Reviews in Environmental Science and Biotechnology, 19(1), 191–215. doi:10.1007/s11157-020-09523-3.

Huang, H., Reddy, N. G., Huang, X., Chen, P., Wang, P., Zhang, Y., Huang, Y., Lin, P., & Garg, A. (2021). Effects of pyrolysis temperature, feedstock type and compaction on water retention of biochar amended soil. Scientific Reports, 11(1), 7419. doi:10.1038/s41598-021-86701-5.

Uroić Štefanko, A., & Leszczynska, D. (2020). Impact of Biomass Source and Pyrolysis Parameters on Physicochemical Properties of Biochar Manufactured for Innovative Applications. Frontiers in Energy Research, 8, 138. doi:10.3389/fenrg.2020.00138.

Kazemi Shariat Panahi, H., Dehhaghi, M., Ok, Y. S., Nizami, A. S., Khoshnevisan, B., Mussatto, S. I., Aghbashlo, M., Tabatabaei, M., & Lam, S. S. (2020). A comprehensive review of engineered biochar: Production, characteristics, and environmental applications. Journal of Cleaner Production, 270, 122462. doi:10.1016/j.jclepro.2020.122462.

Krzesińska, M. (2017). Anisotropy of skeleton structure of highly porous carbonized bamboo and yucca related to the pyrolysis temperature of the precursors. Journal of Analytical and Applied Pyrolysis, 123, 73–82. doi:10.1016/j.jaap.2016.12.024.

Tan, H., Lee, C. T., Ong, P. Y., Wong, K. Y., Bong, C. P. C., Li, C., & Gao, Y. (2021). A Review on The Comparison Between Slow Pyrolysis and Fast Pyrolysis on the Quality of Lignocellulosic and Lignin-Based Biochar. IOP Conference Series: Materials Science and Engineering, 1051(1), 012075. doi:10.1088/1757-899x/1051/1/012075.

Suliman, W., Harsh, J. B., Abu-Lail, N. I., Fortuna, A. M., Dallmeyer, I., & Garcia-Perez, M. (2016). Influence of feedstock source and pyrolysis temperature on biochar bulk and surface properties. Biomass and Bioenergy, 84, 37–48. doi:10.1016/j.biombioe.2015.11.010.

Kloss, S., Zehetner, F., Dellantonio, A., Hamid, R., Ottner, F., Liedtke, V., Schwanninger, M., Gerzabek, M. H., & Soja, G. (2012). Characterization of Slow Pyrolysis Biochars: Effects of Feedstocks and Pyrolysis Temperature on Biochar Properties. Journal of Environmental Quality, 41(4), 990–1000. doi:10.2134/jeq2011.0070.

Zama, E. F., Zhu, Y. G., Reid, B. J., & Sun, G. X. (2017). The role of biochar properties in influencing the sorption and desorption of Pb(II), Cd(II) and As(III) in aqueous solution. Journal of Cleaner Production, 148, 127–136. doi:10.1016/j.jclepro.2017.01.125.

Sahoo, S. S., Vijay, V. K., Chandra, R., & Kumar, H. (2021). Production and characterization of biochar produced from slow pyrolysis of pigeon pea stalk and bamboo. Cleaner Engineering and Technology, 3, 100101. doi:10.1016/j.clet.2021.100101.

Sucipta, M., Putra Negara, D. N. K., Tirta Nindhia, T. G., & Surata, I. W. (2017). Characteristics of Ampel bamboo as a biomass energy source potential in Bali. IOP Conference Series: Materials Science and Engineering, 201(1), 12032. doi:10.1088/1757-899X/201/1/012032.

Hernandez-Mena, L. E., Pecora, A. A. B., & Beraldo, A. L. (2014). Slow pyrolysis of bamboo biomass: Analysis of biochar properties. Chemical Engineering Transactions, 37, 115–120. doi:10.3303/CET1437020.

Hossain, M. Z., Bahar, M. M., Sarkar, B., Donne, S. W., Ok, Y. S., Palansooriya, K. N., Kirkham, M. B., Chowdhury, S., & Bolan, N. (2020). Biochar and its importance on nutrient dynamics in soil and plant. Biochar, 2(4), 379–420. doi:10.1007/s42773-020-00065-z.

Bolan, S., Hou, D., Wang, L., Hale, L., Egamberdieva, D., Tammeorg, P., Li, R., Wang, B., Xu, J., Wang, T., Sun, H., Padhye, L. P., Wang, H., Siddique, K. H. M., Rinklebe, J., Kirkham, M. B., & Bolan, N. (2023). The potential of biochar as a microbial carrier for agricultural and environmental applications. Science of the Total Environment, 886. doi:10.1016/j.scitotenv.2023.163968.

Rafiq, M. K., Bachmann, R. T., Rafiq, M. T., Shang, Z., Joseph, S., & Long, R. L. (2016). Influence of pyrolysis temperature on physico-chemical properties of corn stover (zea mays l.) biochar and feasibility for carbon capture and energy balance. PLoS ONE, 11(6), 156894. doi:10.1371/journal.pone.0156894.

Wang, C., Chen, D., Shen, J., Yuan, Q., Fan, F., Wei, W., Li, Y., & Wu, J. (2021). Biochar alters soil microbial communities and potential functions 3–4 years after amendment in a double rice cropping system. Agriculture, Ecosystems & Environment, 311, 107291. doi:10.1016/j.agee.2020.107291.

Palansooriya, K. N., Wong, J. T. F., Hashimoto, Y., Huang, L., Rinklebe, J., Chang, S. X., Bolan, N., Wang, H., & Ok, Y. S. (2019). Response of microbial communities to biochar-amended soils: a critical review. Biochar, 1(1), 3–22. doi:10.1007/s42773-019-00009-2.

Omara, P., Aula, L., Oyebiyi, F. B., Eickhof, E. M., Carpenter, J., & Raun, W. R. (2020). Biochar application in combination with inorganic nitrogen improves maize grain yield, nitrogen uptake, and use efficiency in Temperate Soils. Agronomy, 10(9), 1241. doi:10.3390/agronomy10091241.

Wang, L., Yu, B., Ji, J., Khan, I., Li, G., Rehman, A., Liu, D., & Li, S. (2023). Assessing the impact of biochar and nitrogen application on yield, water-nitrogen use efficiency and quality of intercropped maize and soybean. Frontiers in Plant Science, 14(1171547). doi:10.3389/fpls.2023.1171547.

Zhang, M., Riaz, M., Xia, H., Li, Y., Wang, X., & Jiang, C. (2022). Four-year biochar study: Positive response of acidic soil microenvironment and citrus growth to biochar under potassium deficiency conditions. Science of the Total Environment, 813, 152515. doi:10.1016/j.scitotenv.2021.152515.

Adekiya, A. O., Agbede, T. M., Olayanju, A., Ejue, W. S., Adekanye, T. A., Adenusi, T. T., & Ayeni, J. F. (2020). Effect of Biochar on Soil Properties, Soil Loss, and Cocoyam Yield on a Tropical Sandy Loam Alfisol. Scientific World Journal, 2020. doi:10.1155/2020/9391630.

Sun, Z., Hu, Y., Shi, L., Li, G., Pang, Z., Liu, S., Chen, Y., & Jia, B. (2022). Effects of biochar on soil chemical properties: A global meta-analysis of agricultural soil. Plant, Soil and Environment, 68(6), 272–289. doi:10.17221/522/2021-PSE.

El-Naggar, A., Lee, S. S., Rinklebe, J., Farooq, M., Song, H., Sarmah, A. K., Zimmerman, A. R., Ahmad, M., Shaheen, S. M., & Ok, Y. S. (2019). Biochar application to low fertility soils: A review of current status, and future prospects. Geoderma, 337, 536–554. doi:10.1016/j.geoderma.2018.09.034.

Wu, L., Zhang, S., Chen, M., Liu, J., & Ding, X. (2021). A sustainable option: Biochar addition can improve soil phosphorus retention and rice yield in a saline–alkaline soil. Environmental Technology & Innovation, 24, 102070. doi:10.1016/j.eti.2021.102070.

Yuan, Y., Liu, Q., Zheng, H., Li, M., Liu, Y., Wang, X., Peng, Y., Luo, X., Li, F., Li, X., & Xing, B. (2023). Biochar as a sustainable tool for improving the health of salt-affected soils. Soil & Environmental Health, 1(3), 100033. doi:10.1016/j.seh.2023.100033.

Domingues, R. R., Sánchez-Monedero, M. A., Spokas, K. A., Melo, L. C. A., Trugilho, P. F., Valenciano, M. N., & Silva, C. A. (2020). Enhancing cation exchange capacity ofweathered soils using biochar: Feedstock, pyrolysis conditions and addition rate. Agronomy, 10(6), 824. doi:10.3390/agronomy10060824.

Wijitkosum, S., & Jiwnok, P. (2019). Effect of biochar on Chinese kale and carbon storage in an agricultural area on a high-rise building. AIMS Agriculture and Food, 4(1), 177–193. doi:10.3934/AGRFOOD.2019.1.177.

Demir, Z. (2019). Effects of Vermicompost on Soil Physicochemical Properties and Lettuce (Lactuca sativa Var. Crispa) Yield in Greenhouse under Different Soil Water Regimes. Communications in Soil Science and Plant Analysis, 50(17), 2151–2168. doi:10.1080/00103624.2019.1654508.

Hafez, E. M., Gowayed, S. M., Nehela, Y., Sakran, R. M., Rady, A. M. S., Awadalla, A., Omara, A. E. D., & Alowaiesh, B. F. (2021). Incorporated biochar-based soil amendment and exogenous glycine betaine foliar application ameliorate rice (Oryza sativa l.) tolerance and resilience to osmotic stress. Plants, 10(9), 1930. doi:10.3390/plants10091930.

Doulgeris, C., Kypritidou, Z., Kinigopoulou, V., & Hatzigiannakis, E. (2023). Simulation of Potassium Availability in the Application of Biochar in Agricultural Soil. Agronomy, 13(3), 784. doi:10.3390/agronomy13030784.

Hou, J., Pugazhendhi, A., Sindhu, R., Vinayak, V., Thanh, N. C., Brindhadevi, K., Lan Chi, N. T., & Yuan, D. (2022). An assessment of biochar as a potential amendment to enhance plant nutrient uptake. Environmental Research, 214, 113909. doi:10.1016/j.envres.2022.113909.

Liu, Y., Li, H., Hu, T., Mahmoud, A., Li, J., Zhu, R., Jiao, X., & Jing, P. (2022). A quantitative review of the effects of biochar application on rice yield and nitrogen use efficiency in paddy fields: A meta-analysis. Science of the Total Environment, 830, 154792. doi:10.1016/j.scitotenv.2022.154792.

Hardy, B., Sleutel, S., Dufey, J. E., & Cornelis, J. T. (2019). The Long-Term Effect of Biochar on Soil Microbial Abundance, Activity and Community Structure Is Overwritten by Land Management. Frontiers in Environmental Science, 7, 110. doi:10.3389/fenvs.2019.00110.

Joseph, S., Cowie, A. L., Van Zwieten, L., Bolan, N., Budai, A., Buss, W., Cayuela, M. L., Graber, E. R., Ippolito, J. A., Kuzyakov, Y., Luo, Y., Ok, Y. S., Palansooriya, K. N., Shepherd, J., Stephens, S., Weng, Z., & Lehmann, J. (2021). How biochar works, and when it doesn’t: A review of mechanisms controlling soil and plant responses to biochar. GCB Bioenergy, 13(11), 1731–1764. doi:10.1111/gcbb.12885.

Alkharabsheh, H. M., Seleiman, M. F., Battaglia, M. L., Shami, A., Jalal, R. S., Alhammad, B. A., Almutairi, K. F., & Al-Saif, A. M. (2021). Biochar and its broad impacts in soil quality and fertility, nutrient leaching and crop productivity: A review. Agronomy, 11(5), 993 10 3390 11050993. doi:10.3390/agronomy11050993.

Chang, Y., Rossi, L., Zotarelli, L., Gao, B., Shahid, M. A., & Sarkhosh, A. (2021). Biochar improves soil physical characteristics and strengthens root architecture in Muscadine grape (Vitis rotundifolia L.). Chemical and Biological Technologies in Agriculture, 8(1). doi:10.1186/s40538-020-00204-5.

Bai, X., Zhang, S., Shao, J., Chen, A., Jiang, J., Chen, A., & Luo, S. (2022). Exploring the negative effects of biochars on the germination, growth, and antioxidant system of rice and corn. Journal of Environmental Chemical Engineering, 10(3), 107398. doi:10.1016/j.jece.2022.107398.

Regmi, A., Poudyal, S., Singh, S., Coldren, C., Moustaid-Moussa, N., & Simpson, C. (2023). Biochar Influences Phytochemical Concentrations of Viola cornuta Flowers. Sustainability (Switzerland), 15(5), 3882. doi:10.3390/su15053882.

Schulz, H., Dunst, G., & Glaser, B. (2014). No effect level of co-composted biochar on plant growth and soil properties in a greenhouse experiment. Agronomy, 4(1), 34–51. doi:10.3390/agronomy4010034.

Ye, L., Camps-Arbestain, M., Shen, Q., Lehmann, J., Singh, B., & Sabir, M. (2020). Biochar effects on crop yields with and without fertilizer: A meta-analysis of field studies using separate controls. Soil Use and Management, 36(1), 2–18. doi:10.1111/sum.12546.

Wijitkosum, S., & Sriburi, T. (2021). Applying cassava stems biochar produced from agronomical waste to enhance the yield and productivity of maize in unfertile soil. Fermentation, 7(4), 277. doi:10.3390/fermentation7040277.

Simko, I., Hayes, R. J., Mou, B., & McCreight, J. D. (2015). Lettuce and Spinach. CSSA Special Publications, Madison, United States. doi:10.2135/cssaspecpub33.c4.

Dumroese, R. K., Heiskanen, J., Englund, K., & Tervahauta, A. (2011). Pelleted biochar: Chemical and physical properties show potential use as a substrate in container nurseries. Biomass and Bioenergy, 35(5), 2018–2027. doi:10.1016/j.biombioe.2011.01.053.

International Biochar Initiative (IBI). (2015). Standardized Product Definition and Product Testing Guidelines for Biochar that Is Used in Soil. International Biochar Initiative (IBI), Washington, United States.

Yuan, J. H., Xu, R. K., & Zhang, H. (2011). The forms of alkalis in the biochar produced from crop residues at different temperatures. Bioresource Technology, 102(3), 3488–3497. doi:10.1016/j.biortech.2010.11.018.

ASTM D 5373-14e1 (2016) Standard Test Methods for Determination of Carbon, Hydrogen and Nitrogen in Analysis Samples of Coal and Carbon in Analysis Samples of Coal and Coke. ASTM International, Pennsylvania, United States. doi:10.1520/D5373-14E01.

Fan, Q., Sun, J., Chu, L., Cui, L., Quan, G., Yan, J., Hussain, Q., & Iqbal, M. (2018). Effects of chemical oxidation on surface oxygen-containing functional groups and adsorption behavior of biochar. Chemosphere, 207, 33–40. doi:10.1016/j.chemosphere.2018.05.044.

Klasson, K. T., Boihem, L. L., Uchimiya, M., & Lima, I. M. (2014). Influence of biochar pyrolysis temperature and post-treatment on the uptake of mercury from flue gas. Fuel Processing Technology, 123, 27–33. doi:10.1016/j.fuproc.2014.01.034.

Schimmelpfennig, S., & Glaser, B. (2012). One Step Forward toward Characterization: Some Important Material Properties to Distinguish Biochars. Journal of Environmental Quality, 41(4), 1001–1013. doi:10.2134/jeq2011.0146.

Wijitkosum, S., & Sriburi, T. (2019). Increasing the Amount of Biomass in Field Crops for Carbon Sequestration and Plant Biomass Enhancement Using Biochar. Biochar - An Imperative Amendment for Soil and the Environment, IntechOpen, London, United Kingdom. doi:10.5772/intechopen.82090.

Leng, L., Xiong, Q., Yang, L., Li, H., Zhou, Y., Zhang, W., Jiang, S., Li, H., & Huang, H. (2021). An overview on engineering the surface area and porosity of biochar. Science of the Total Environment, 763, 144204. doi:10.1016/j.scitotenv.2020.144204.

Hussain, N., & Abbasi, S. A. (2018). Efficacy of the vermicomposts of different organic wastes as “clean” fertilizers: State-of-the-art. Sustainability (Switzerland), 10(4), 1205. doi:10.3390/su10041205.

Manyuchi, M., Chitambwe, T., Phiri, A., Muredzi, P., & Kanhukamwe, Q. (2013). Effect of vermicompost, vermiwash and application time on soil physicochemical properties. International Journal of Chemical and Environmental Engineering, 4(4), 216-220.

Elbl, J., Maková, J., Javoreková, S., Medo, J., Kintl, A., Lošák, T., & Lukas, V. (2019). Response of microbial activities in soil to various organic and mineral amendments as an indicator of soil quality. Agronomy, 9(9), 485. doi:10.3390/agronomy9090485.

Ditzler, C., Scheffe, K., & Monger, H. C. (2017). Soil survey manual: Soil science division staff. Goverment Printing Office: Washington, United States.

Bremner, J. M. (2016). Inorganic Forms of Nitrogen. Methods of Soil Analysis, 1179–1237, Agronomy Monographs, Madison, United States. doi:10.2134/agronmonogr9.2.c33.

Bray, R. H., & Kurtz, L. T. (1945). Determination of total, organic, and available forms of phosphorus in soils. Soil Science, 59(1), 39–45. doi:10.1097/00010694-194501000-00006.

Estefan, G. (2013). Methods of soil, plant, and water analysis: a manual for the West Asia and North Africa region. International Center for Agricultural Research in the Dry Areas (ICARDA), Beirut, Lebanon.

Full Text: PDF

DOI: 10.28991/ESJ-2024-08-03-07


  • There are currently no refbacks.

Copyright (c) 2024 saowanee wijitkosum, Thavivongse Sriburi, Luechai Krutnoi