Artificial Intelligence for Impact Assessment of Administrative Burdens

Victor Costa, Pedro Coelho, Mauro Castelli

Abstract


This study proposes the use of Artificial Intelligence (AI) to automatize part of the legislative impact assessment process. In particular, the focus of this study is the automatic identification of administrative burdens from legislative documents. The goal of impact assessment for administrative burdens is to apply an evidence-based approach toward compliance costs generated by regulation. Employing advanced Natural Language Processing (NLP) techniques based on a transformer architecture, a system was specifically developed and tested using Portuguese legislation. The experimental phase involved the system's ability to accurately and comprehensively identify administrative burdens. Experimental results demonstrated the system's effectiveness, showing its suitability for supporting the legislative impact assessment process by automating a time-consuming task. To the best of our knowledge, this is the first attempt concerning the use of AI for automatizing the identification of administrative burdens. The proposed system may provide governments and policymakers with a tool to speed up the legislative impact assessment process, thereby streamlining decision-making processes. Moreover, the use of AI can make the legislative impact assessment process less subjective, thus increasing its transparency and making citizens more confident about the impartiality of the process that leads to new legislation.

 

Doi: 10.28991/ESJ-2024-08-01-019

Full Text: PDF


Keywords


Impact Assessment; Administrative Burdens; Artificial Intelligence; Natural Language Processing; Transformers; BERT.

References


Vanneschi, L., Horn, D. M., Castelli, M., & Popovič, A. (2018). An artificial intelligence system for predicting customer default in e-commerce. Expert Systems with Applications, 104, 1–21. doi:10.1016/j.eswa.2018.03.025.

Castelli, M., Vanneschi, L., & Silva, S. (2013). Prediction of high performance concrete strength using Genetic Programming with geometric semantic genetic operators. Expert Systems with Applications, 40(17), 6856–6862. doi:10.1016/j.eswa.2013.06.037.

Castelli, M., Vanneschi, L., & Silva, S. (2014). Prediction of the Unified Parkinson’s Disease Rating Scale assessment using a genetic programming system with geometric semantic genetic operators. Expert Systems with Applications, 41(10), 4608–4616. doi:10.1016/j.eswa.2014.01.018.

Besozzi, D., Manzoni, L., Nobile, M. S., Spolaor, S., Castelli, M., Vanneschi, L., Cazzaniga, P., Ruberto, S., Rundo, L., & Tangherloni, A. (2020). Computational Intelligence for Life Sciences. Fundamenta Informaticae, 171(1–4), 57–80. doi:10.3233/FI-2020-1872.

Popovič, A., Hackney, R., Tassabehji, R., & Castelli, M. (2018). The impact of big data analytics on firms’ high value business performance. Information Systems Frontiers, 20(2), 209–222. doi:10.1007/s10796-016-9720-4.

Zuiderwijk, A., Chen, Y. C., & Salem, F. (2021). Implications of the use of artificial intelligence in public governance: A systematic literature review and a research agenda. Government Information Quarterly, 38(3), 101577. doi:10.1016/j.giq.2021.101577.

Sousa, W. G. de, Melo, E. R. P. de, Bermejo, P. H. D. S., Farias, R. A. S., & Gomes, A. O. (2019). How and where is artificial intelligence in the public sector going? A literature review and research agenda. Government Information Quarterly, 36(4), 101392. doi:10.1016/j.giq.2019.07.004.

Ojo, A., Mellouli, S., & Ahmadi Zeleti, F. (2019). A Realist Perspective on AI-era Public Management. Proceedings of the 20th Annual International Conference on Digital Government Research, 159-170. doi:10.1145/3325112.3325261.

Dwivedi, Y. K., Hughes, L., Ismagilova, E., Aarts, G., Coombs, C., Crick, T., Duan, Y., Dwivedi, R., Edwards, J., Eirug, A., Galanos, V., Ilavarasan, P. V., Janssen, M., Jones, P., Kar, A. K., Kizgin, H., Kronemann, B., Lal, B., Lucini, B., … Williams, M. D. (2021). Artificial Intelligence (AI): Multidisciplinary perspectives on emerging challenges, opportunities, and agenda for research, practice and policy. International Journal of Information Management, 57, 101994. doi:10.1016/j.ijinfomgt.2019.08.002.

Sun, T. Q., & Medaglia, R. (2019). Mapping the challenges of Artificial Intelligence in the public sector: Evidence from public healthcare. Government Information Quarterly, 36(2), 368–383. doi:10.1016/j.giq.2018.09.008.

Aoki, N. (2020). An experimental study of public trust in AI chatbots in the public sector. Government Information Quarterly, 37(4), 101490. doi:10.1016/j.giq.2020.101490.

Wirtz, B. W., Weyerer, J. C., & Sturm, B. J. (2020). The Dark Sides of Artificial Intelligence: An Integrated AI Governance Framework for Public Administration. International Journal of Public Administration, 43(9), 818–829. doi:10.1080/01900692.2020.1749851.

Wang, W., & Siau, K. (2018). Artificial intelligence: a study on governance, policies, and regulations. Proceedings of the Thirteenth Midwest Association for Information Systems Conference, 17-18 May, 2018, Saint Louis, United States.

Margetts, H., & Dorobantu, C. (2019). Rethink government with AI. Nature, 568(7751), 163–165. doi:10.1038/d41586-019-01099-5.

Coglianese, C. (2012). Measuring Regulatory Performance - Evaluating the Impact of Regulation and Regulatory Policy. Organisation for Economic Co-operation and Development (OECD), Paris, France.

Carey, M. P. (2016). Methods of estimating the total cost of Federal regulations. Congressional Research Service, Washington, United States.

Coffey, B., McLaughlin, P. A., & Peretto, P. (2020). The cumulative cost of regulations. Review of Economic Dynamics, 38. doi:10.1016/j.red.2020.03.004.

Coletti, P. (2016). Standard cost model. In Handbook of Regulatory Impact Assessment. Edward Elgar Publishing, Cheltenham, United Kingdom. doi:10.4337/9781782549567.00019.

George, B., Pandey, S. K., Steijn, B., Decramer, A., & Audenaert, M. (2021). Red Tape, Organizational Performance, and Employee Outcomes: Meta-analysis, Meta-regression, and Research Agenda. Public Administration Review, 81(4), 638–651. doi:10.1111/puar.13327.

United States Office of Management. (2015). Budget of the United States Government. US Government Printing Office, Washington, United States.

Meuwese, A., Scheltema, M., & van der Velden, L. (2015). The OECD framework for regulatory policy evaluation: An initial assessment. European Journal of Risk Regulation, 6(1), 101–110. doi:10.1017/S1867299X00004323S1867299X00004323.

Otter, D. W., Medina, J. R., & Kalita, J. K. (2021). A Survey of the Usages of Deep Learning for Natural Language Processing. IEEE Transactions on Neural Networks and Learning Systems, 32(2), 604–624. doi:10.1109/TNNLS.2020.2979670.

Qiu, X. P., Sun, T. X., Xu, Y. G., Shao, Y. F., Dai, N., & Huang, X. J. (2020). Pre-trained models for natural language processing: A survey. Science China Technological Sciences, 63(10), 1872–1897. doi:10.1007/s11431-020-1647-3.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., ... & Polosukhin, I. (2017). Attention is all you need. Advances in neural information processing systems, 30, 4-9 December, 2017, Long Beach, United States.

Hu, D. (2020). An Introductory Survey on Attention Mechanisms in NLP Problems. Intelligent Systems and Applications, IntelliSys 2019, Advances in Intelligent Systems and Computing, 1038. Springer, Cham, Switzerland. doi:10.1007/978-3-030-29513-4_31.

Kuziemski, M., & Misuraca, G. (2020). AI governance in the public sector: Three tales from the frontiers of automated decision-making in democratic settings. Telecommunications Policy, 44(6), 101976. doi:10.1016/j.telpol.2020.101976.

LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436–444. doi:10.1038/nature14539.

Singh, P. (2023). Systematic review of data-centric approaches in artificial intelligence and machine learning. Data Science and Management, 6(3), 144–157. doi:10.1016/j.dsm.2023.06.001.

Barredo Arrieta, A., Díaz-Rodríguez, N., Del Ser, J., Bennetot, A., Tabik, S., Barbado, A., Garcia, S., Gil-Lopez, S., Molina, D., Benjamins, R., Chatila, R., & Herrera, F. (2020). Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI. Information Fusion, 58, 82–115. doi:10.1016/j.inffus.2019.12.012.

Castelli, M., Sormani, R., Trujillo, L., & Popovič, A. (2017). Predicting per capita violent crimes in urban areas: an artificial intelligence approach. Journal of Ambient Intelligence and Humanized Computing, 8(1), 29–36. doi:10.1007/s12652-015-0334-3.

Redmond, M., & Baveja, A. (2002). A data-driven software tool for enabling cooperative information sharing among police departments. European Journal of Operational Research, 141(3), 660–678. doi:10.1016/S0377-2217(01)00264-8.

Doulaverakis, C., Konstantinou, N., Knape, T., Kompatsiaris, I., & Soldatos, J. (2011). An Approach to Intelligent Information Fusion in Sensor Saturated Urban Environments. 2011 European Intelligence and Security Informatics Conference, Athens, Greece. doi:10.1109/eisic.2011.24.

Cho, H., Seo, Y. W., Kumar, B. V. K. V., & Rajkumar, R. R. (2014). A multi-sensor fusion system for moving object detection and tracking in urban driving environments. Proceedings - IEEE International Conference on Robotics and Automation, 1836–1843. doi:10.1109/ICRA.2014.6907100.

Mikhaylov, S. J., Esteve, M., & Campion, A. (2018). Artificial intelligence for the public sector: opportunities and challenges of cross-sector collaboration. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 376(2128), 20170357. doi:10.1098/rsta.2017.0357.

Janssen, M., Brous, P., Estevez, E., Barbosa, L. S., & Janowski, T. (2020). Data governance: Organizing data for trustworthy Artificial Intelligence. Government Information Quarterly, 37(3), 101493. doi:10.1016/j.giq.2020.101493.

Liu, H. W., Lin, C. F., & Chen, Y. J. (2019). Beyond state v loomis: Artificial intelligence, government algorithmization and accountability. International Journal of Law and Information Technology, 27(2), 122–141. doi:10.1093/ijlit/eaz001.

Chen, T., Ran, L., & Gao, X. (2019). AI innovation for advancing public service. Proceedings of the 20th Annual International Conference on Digital Government Research, 100-108. doi:10.1145/3325112.3325243.

Kouziokas, G. N. (2017). The application of artificial intelligence in public administration for forecasting high crime risk transportation areas in urban environment. Transportation Research Procedia, 24, 467–473. doi:10.1016/j.trpro.2017.05.083.

Romic, D., & Halak, Z. V. (2014). Regulatory Impact Assessment in The Republic of Croatia-Situation and Perspective. Challenges of the Knowledge Society, Nicolae Titulescu University Editorial House, Bucharest, Romania.

Zeitz, D. (2016). Better regulation in Germany as quality assurance system: Recent development and current challenges. Netherlands Administrative Law Library (Nall). doi:10.5553/nall/.000025.

Karpen, U. (2017). Regulatory impact assessment: current situation and prospects in the German Parliament. Amicus Curiae, 2015(101), 14. doi:10.14296/ac.v2015i101.2342.

Kosach, I., Shaposhnykov, K., Chub, A., Yakushko, I., Kotelevets, D., & Lozychenko, O. (2022). Regulatory policy in the context of effective public governance: evidence of Eastern European Countries. Cuestiones Políticas, 40(72), 456–473. doi:10.46398/cuestpol.4072.26.

Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2018). Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805. doi:10.48550/arXiv.1810.04805.

Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., ... & Stoyanov, V. (2019). Roberta: A robustly optimized BERT pretraining approach. arXiv preprint, arXiv:1907.11692. doi:10.48550/arxiv.1907.11692.

Yang, Z., Dai, Z., Yang, Y., Carbonell, J., Salakhutdinov, R. R., & Le, Q. V. (2019). Xlnet: Generalized autoregressive pretraining for language understanding. Advances in neural information processing systems, 32, 8-14 December, 2019, Vancouver, Canada.

Clark, K., Luong, M. T., Le, Q. V., & Manning, C. D. (2020). Electra: Pre-training text encoders as discriminators rather than generators. arXiv preprint arXiv:2003.10555. doi:10.48550/arXiv.2003.10555.

Pan, S. J., & Yang, Q. (2010). A Survey on Transfer Learning. IEEE Transactions on Knowledge and Data Engineering, 22(10), 1345–1359. doi:10.1109/tkde.2009.191.

Gururangan, S., Marasović, A., Swayamdipta, S., Lo, K., Beltagy, I., Downey, D., & Smith, N. A. (2020). Don’t Stop Pretraining: Adapt Language Models to Domains and Tasks. Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. doi:10.18653/v1/2020.acl-main.740.

Chalkidis, I., Fergadiotis, M., Malakasiotis, P., Aletras, N., & Androutsopoulos, I. (2020). LEGAL-BERT: The Muppets straight out of law school. arXiv preprint arXiv:2010.02559. doi:10.48550/arXiv.2010.02559.

Sinha, K., Jia, R., Hupkes, D., Pineau, J., Williams, A., & Kiela, D. (2021). Masked Language Modeling and the Distributional Hypothesis: Order Word Matters Pre-training for Little. Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing. doi:10.18653/v1/2021.emnlp-main.230.

Ratner, A. J., De Sa, C. M., Wu, S., Selsam, D., & Ré, C. (2016). Data Programming: Creating Large Training Sets, Quickly. Advances in Neural Information Processing Systems, 29, 5-10 December, 2016, Barcelona, Spain.

Settles, B. (2012). Active learning (synthesis lectures on artificial intelligence and machine learning). Morgan Claypool Publishers, San Rafael, United States.

Ren, P., Xiao, Y., Chang, X., Huang, P. Y., Li, Z., Gupta, B. B., Chen, X., & Wang, X. (2022). A Survey of Deep Active Learning. ACM Computing Surveys, 54(9), 1–40. doi:10.1145/3472291.

Varma, P., & Re´, C. (2018). Snuba: Automating weak supervision to label training data. Proceedings of the VLDB Endowment, 12(3), 223–236. doi:10.14778/3291264.3291268.

Howard, J., & Ruder, S. (2018). Universal Language Model Fine-tuning for Text Classification. Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics. doi:10.18653/v1/p18-1031.

Peters, M. E., Neumann, M., Iyyer, M., Gardner, M., Clark, C., Lee, K., & Zettlemoyer, L. (2018). Deep contextualized word representations. NAACL HLT 2018-2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies-Proceedings of the Conference, 1-6 June, 2018, New Orleans, United States.

Radford, A., Narasimhan, K., Salimans, T., & Sutskever, I. (2018). Improving language understanding by generative pre-training. Preprint, 1-12. Available online: https://www.mikecaptain.com/resources/pdf/GPT-1.pdf (accessed on May 2023).

Loshchilov, I., & Hutter, F. (2017). Decoupled weight decay regularization. arXiv preprint, arXiv:1711.05101. doi:10.48550/arXiv.1711.05101.


Full Text: PDF

DOI: 10.28991/ESJ-2024-08-01-019

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Victor Costa, Pedro Coelho, Mauro Castelli