Industrial, Collaborative and Mobile Robotics in Latin America: Review of Mechatronic Technologies for Advanced Automation

Jose Cornejo, S. Barrera, C. A. Herrera Ruiz, F. Gutierrez, M. O. Casasnovas, Leonardo Kot, M. A. Solis, R. Larenas, F. Castro-Nieny, M. R. Arbulú Saavedra, R. Rodríguez Serrezuela, Y. Muñoz Londoño, Alejandro Serna, D. Ortega-Aranda, S. Aranda-Miramontes, I. Chang, M. Cardona, A. Carrasquilla-Batista, R. Palomares, R. Rodriguez, Ruben Parisuaña, Miguel Bórquez, Oscar Navarro, Fernando Sanchez, I. A. Bonev, Jonathan Coulombe, F. Martín Rico, B. L. Treviño-Elizondo, H. García-Reyes, A. Sollazzo, A. Dubor, A. Markopoulou, C. De Marinis, Marco Chacin, Andres Mora, M. Pérez-Ruiz, A. Ribeiro, E. A. L'Huillier

Abstract


Mechatronics and Robotics (MaR) have recently gained importance in product development and manufacturing settings and applications. Therefore, the Center for Space Emerging Technologies (C-SET) has managed an international multi-disciplinary study to present, historically, the first Latin American general review of industrial, collaborative, and mobile robotics, with the support of North American and European researchers and institutions. The methodology is developed by considering literature extracted from Scopus, Web of Science, and Aerospace Research Central and adding reports written by companies and government organizations. This describes the state-of-the-art of MaR until the year 2023 in the 3 Sub-Regions: North America, Central America, and South America, having achieved important results related to the academy, industry, government, and entrepreneurship; thus, the statistics shown in this manuscript are unique. Also, this article explores the potential for further work and advantages described by robotic companies such as ABB, KUKA, and Mecademic and the use of the Robot Operating System (ROS) in order to promote research, development, and innovation. In addition, the integration with industry 4.0 and digital manufacturing, architecture and construction, aerospace, smart agriculture, artificial intelligence, and computational social science (human-robot interaction) is analyzed to show the promising features of these growing tech areas, considering the improvements to increase production, manufacturing, and education in the Region. Finally, regarding the information presented, Latin America is considered an important location for investments to increase production and product development, taking into account the further proposal for the creation of the LATAM Consortium for Advanced Robotics and Mechatronics, which could support and work on roboethics and education/R+D+I law and regulations in the Region.

 

Doi: 10.28991/ESJ-2023-07-04-025

Full Text: PDF


Keywords


Mechatronics; Robotics; Industry; Automation; Human-Robot Interaction; Latin America.

References


Chang, I., Baca, J., Moreno, H. A., Carrera, I. G., & Cardona, M. N. (2017). Advances in Automation and Robotics Research in Latin America. Lecture Notes in Networks and Systems. doi:10.1007/978-3-319-54377-2.

Martínez, A., Moreno, H. A., Carrera, I. G., Campos, A., & Baca, J. (2020). Advances in Automation and Robotics Research. Lecture Notes in Networks and Systems. doi:10.1007/978-3-030-40309-6.

Moreno, H. A., Carrera, I. G., Ramírez-Mendoza, R. A., Baca, J., & Banfield, I. A. (2022). Advances in Automation and Robotics Research. Lecture Notes in Networks and Systems. doi:10.1007/978-3-030-90033-5.

Marroquin, A., & Saravia, A. (2022). Trust and beliefs about robots in Latin America. International Journal of Social Economics, 49(8), 1132–1151. doi:10.1108/IJSE-08-2021-0504.

Patino, K. P., Diego, B. C., Rodilla, V. M., Conde, M. J. R., & Rodriguez-Aragon, J. F. (2014). Using Robotics as a Learning Tool in Latin America and Spain. IEEE Revista Iberoamericana de Tecnologias Del Aprendizaje, 9(4), 144–150. doi:10.1109/rita.2014.2363009.

Ruiz-del-Solar, J., & Weitzenfeld, A. (2011). Advances in Robotics in Latin America. Journal of Intelligent & Robotic Systems, 66(1–2), 1–2. doi:10.1007/s10846-011-9629-6.

The Institution of Engineering and Technology. (2021). Guide to Implementing Industrial Robots. The Institution of Engineering and Technology, Hertfordshire, United Kingdom. Available online: https://electrical.theiet.org/guidance-codes-of-practice/publications-by-category/smart-and-connected-technologies/guide-to-implementing-industrial-robots/ (accessed on May 2023).

Munck, R. (2012). Contemporary Latin America. Bloomsbury Publishing, London, United Kingdom. doi:10.1007/978-1-137-01095-7.

Ross, L. T., Fardo, S. W., & Walach, M. F. (2017). Industrial robotics fundamentals: Theory and applications. Goodheart-Willcox Co, Tinley Park, United States.

Schröder, P., Albaladejo, M., Ribas, P. A., MacEwen, M., & Tilkanen, J. (2020). The circular economy in Latin America and the Caribbean. The Royal Institute of International Affairs, Chatham House: London, United Kingdom.

Kitchenham, B. (2004). Procedures for performing systematic reviews. Technical Report TR/SE-0401, Keele University, Keele, United Kingdom.

Carrera-Rivera, A., Ochoa, W., Larrinaga, F., & Lasa, G. (2022). How-to conduct a systematic literature review: A quick guide for computer science research. MethodsX, 9, 101895. doi:10.1016/j.mex.2022.101895.

IMD. (2022). World Competitiveness Ranking 2022. Institute for Management Development rankings, Lausanne, Switzerland. Available online: https://www.imd.org/centers/world-competitiveness-center/rankings/world-competitiveness/ (accessed on April 2023).

World Robotics Industrial Robots. (2021). World Robotics Industrial Robot Installations Database - Data Availability Chart. World Robotics Industrial Robots Frankfurt, Germany. Available online: https://ifr.org/img/worldrobotics/Database_-_data_availability__WR_2021.pdf (accessed on April 2023).

Slawinski, E., Slawinski, L., Santiago, D., Salinas, L., & Mut, V. (2021). RAT20 Teleoperated Argentine Robot. 2021 XIX Workshop on Information Processing and Control (RPIC). doi:10.1109/rpic53795.2021.9648528.

Suescun, R., & Lee, S. (2019). Robots in Latin America: how many, where are they and how much do they pay?. BID. Available online: https://blogs.iadb.org/gestion-fiscal/es/robots-en-america-latina-cuantos-son-donde-estan-y-cuanto-tributan/ (accessed on April 2023). (In Spanish).

Argentine School of Industrial Robotics. (2023). Argentine School of Industrial Robotics - Training Programs. Argentine School of Industrial Robotics, Buenos Aires, Argentina. Available online: https://eari.com.ar/ (accessed on April 2023).

Modular Robot. (2023). Buenos Aires, Argentina. Available online: https://modular-robot.com.ar/ (accessed on April 2023).

Infocamp. (2021). The robotic era: more than 1,000 agricultural robots are already working in Argentina. Infocamp, Buenos Aires, Argentina. Available online: https://www.infocampo.com.ar/la-era-robotica-en-la-argentina-ya-trabajan-mas-de-1-000-robots-agricolas/ (accessed on April 2023). (In Spanish).

Consultancy.lat (2023). Available online: https://www.consultancy.lat/news/311/mexico-leads-latin-america-in-robotization-followed-by-brazil-and-argentina (accessed on April 2023).

UTN. (2023). University Extension Secretariat. Available online: https://seu.frc.utn.edu.ar/?pIs=1271 (accessed on April 2023).

Missions School of Robotics, Misiones, Argentina. Available online: https://www.escueladeroboticamisiones.com/node/35 (accessed on April 2023). (In Spanish).

Ministry of Science, Technology and Innovation. (2022). Robotics and Technology to Educate Program. Ministry of Science, Technology and Innovation, Buenos Aires, Argentina. Available online: https://www.argentina.gob.ar/ciencia/cofecyt/ financiamiento/robotica (accessed on April 2023). (In Spanish).

De Cristoforis, P., Pedre, S., Nitsche, M., Fischer, T., Pessacg, F., & Di Pietro, C. (2013). A Behavior-based approach for educational robotics activities. IEEE Transactions on Education, 56(1), 61–66. doi:10.1109/TE.2012.2220359.

Chudnovsky, D. (1985). The diffusion of state-of-the-art technologies in Argentina: the case of numerically controlled machine tools, CAD/CAM and robots. Economic Development, 24(96), 483. doi:10.2307/3466919.

Alonso, D., Carelli, R., Gomez, J. C., & Verrastro, C. (2015). The Eighth Argentine Robotics Workshop: Regional. IEEE Robotics & Automation Magazine, 22(1), 12–119. doi:10.1109/mra.2014.2385569.

Estay, P. M. (2021). Participation of robots in industrial processes. National Congress of Chile building, Valparaíso, Chile. Available online: www.bcn.cl/obtienearchivo?id=repositorio/10221/31944/1/Particiacio__n_de_los_robots_en_los_procesos_ industriales.pdf (accessed on April 2023). (In Spanish).

Ruiz-del-Solar, J., & Avilés, R. (2004). Robotics courses for children as a motivation tool: The Chilean experience. IEEE Transactions on Education, 47(4), 474–480. doi:10.1109/TE.2004.825063.

Ruiz-del-Solar, J. (2010). Robotics-centered outreach activities: An integrated approach. IEEE Transactions on Education, 53(1), 38–45. doi:10.1109/TE.2009.2022946.

Ruiz-Del-Solar, J., Vallejos, P., Asenjo, R., Correa, M., Parra-Tsunekawa, I., & Mascaro, M. (2016). Robotics research in Chile: Addressing the needs of the local mining industry at the Advanced Mining Technology Center. International Journal of Advanced Robotic Systems, 14(1). doi:10.1177/1729881416682695.

Ministry of Science, Technology, Knowledge and Innovation. (2021). Política Nacional de Inteligencia Artificial. Ministry of Science, Technology, Knowledge and Innovation, Santiago, Chile. Available online: https://www.minciencia.gob.cl/uploads/ filer_public/bc/38/bc389daf-4514-4306-867c-760ae7686e2c/documento_politica_ia_digital_.pdf (accessed on April 2023). (In Spanish).

IFR. (2021). IFR presents World Robotics 2021 reports. International Federation of Robotics (IFR), Frankfurt, Germany. Available online: https://ifr.org/ifr-press-releases/news/robot-sales-rise-again (accessed on April 2023).

LAW 20949. (2016). Amends The Labor Code to Reduce the Weight of Manual Handling Loads. National Congress of Chile building, Valparaíso, Chile. Available online: https://www.bcn.cl/leychile/navegar?idNorma=1094899 (accessed on April 2023).

Klump, R., Jurkat, A., & Schneider, F. (2021). Tracking the rise of robots: A survey of the IFR database and its applications. MPRA Paper No. 107909, University Library of Munich, Munich, Germany.

MIRS. (2023). Mining Industry Robotics Solution. Mining & Heavy Industry Robotics (MIRS), Vitacura, Chile. Available online: https://mirsrobotics.com (accessed on April 2023).

Paredes, D., & Fleming-Muñoz, D. (2021). Automation and robotics in mining: Jobs, income and inequality implications. Extractive Industries and Society, 8(1), 189–193. doi:10.1016/j.exis.2021.01.004.

MIRA. (2023). Salt Lake City, United States. Available online: https://mirsrobotics.com/ (accessed on April 2023).

Robotec. (2023). Robotec, Santiago, Chile. Available online: https://www.robotec.cl/ (accessed on April 2023). (In Spanish).

Patindustrial. (2023). Pat Industrial Solutions, Quilicura, Chile. Available online: https://patindustrial.com/ (accessed on April 2023). (In Spanish).

Austral-Robotics, Santiago, Chile. Available online: https://austral-robotics.com/ (accessed on April 2023).

Lefranc, G., Cordova, F., & Nobile, R. (2003). Technical overview of robotics contributions in Chile. Proceedings of the 1992 International Conference on Industrial Electronics, Control, Instrumentation, and Automation, 2, 807–812. doi:10.1109/iecon.1992.254527.

Troni, G., & Abusleme, A. (2013). Introduction to microbots: A hands-on, contest-driven, interdisciplinary course on mobile robot design in a developing country. International Journal of Electrical Engineering and Education, 50(4), 395–407. doi:10.7227/IJEEE.50.4.5.

Torrico-Claure, M., Valenzuela-Coloma, H., Pino-Ramos, A., Lau-Cortes, Y. S., & Mendoza-Garcia, R. (We got it, they shouted: First Steps of a Robotics Research Laboratory at Northern Chile. Available online: http://www.eudim.uta.cl/mechatronics/ publications/Torrico-Claure2012.pdf (accessed on April 2023).

Barrera, C. A. (2017). Present and Future of Industrial Robotics in Colombia. Manufactura Latam, Bogotá, Colombia. Available online: https://www.reporteroindustrial.com/temas/Presente-y-futuro-de-la-robotica-industrial-en-Colombia+120872?pagina=2 (accessed on April 2023). (In Spanish).

Mayer, J. (2018). Robots and industrialization: What policies for inclusive growth?. Intergovernmental Group of Twenty Four. Friedrich Ebert Stiftung, 23.

Arbulu, M., Mateus, P., Wagner, M., Beltran, C., & Harada, K. (2018). Industry 4.0, Intelligent Visual Assisted Picking Approach. Mining Intelligence and Knowledge Exploration, MIKE 2018. Lecture Notes in Computer Science, 11308. Springer, Cham, Switzerland. doi:10.1007/978-3-030-05918-7_18.

Instituto Colombiano de Robótica Avanzada (ICRA), Antioquia, Colombia. Available online: https://www.icra.com.co/ (accessed on April 2023). (In Spanish).

Silva Ortigoza, R., Marcelino-Aranda, M., Silva Ortigoza, G., Hernandez Guzman, V. M., Molina-Vilchis, M. A., Saldana-Gonzalez, G., Herrera-Lozada, J. C., & Olguin-Carbajal, M. (2012). Wheeled mobile robots: A review. IEEE Latin America Transactions, 10(6), 2209–2217. doi:10.1109/TLA.2012.6418124.

The Blue Alliance. (2017). CIP - Team 6001. The Blue Alliance, West Palm Beach, United States. Available online: https://www.thebluealliance.com/team/6001/2017 (accessed on April 2023).

The Blue Alliance. (2019). CIP - Team 6001. The Blue Alliance, West Palm Beach, United States. Available online: https://www.thebluealliance.com/team/6001/2019 (accessed on April 2023).

ICRA-EIA. (2021), Tatacoa Rover 2021. University Rover Challenge. Available online: https://wswcolombia.com/wp-content/uploads/2021/10/Presentacion-del-equipo.pdf (accessed on April 2023).

Robótica Colombiana, Bogota, Colombia. Available online: https://robocol.uniandes.edu.co/es/ (accessed on April 2023).

Kiwibot. (2021). The Delivery Service for Your Business. Kiwibot, Berkeley, United States. Available online: http://www.kiwibot.com (accessed on April 2023).

Robotics4.0, Neiva, Huila, Colombia, South America. Available online: https://robotics40.com/ (accessed on April 2023)

ANDI. (2020). Colombia: Balance 2020 and Prospects 2021. Available online: http://www.andi.com.co/Home/Noticia/15877-colombia-balance-2020-y-perspectivas-20 (accessed on April 2023).

Roa, M. A., Ramírez, R. E., & Garzón, D. A. (2006). Development of Biped Robots at the National University of Colombia. Climbing and Walking Robots, 357–364. doi:10.1007/3-540-26415-9_43.

Cifuentes, N. J. R., & Porras, J. H. G. (2007). Modeling of legged robot based on Colombian insect observations. Electronics, Robotics and Automotive Mechanics Conference (CERMA 2007). doi:10.1109/cerma.2007.4367737.

Exico. (1996). Trends in Organized Crime, 1(4), 4–5. doi:10.1007/bf02696259.

Thirión, J. M. (2020). FDI, regional development and structural change. The Case of three states in El Bajío, Mexico. Análisis Económico, 35(90), 199–220. doi:10.24275/uam/azc/dcsh/ae/2020v35n90/tririon.

ABB. (2018). ABB and The Economist present the Automation Readiness Index, a world ranking of artificial intelligence and robotics. ABB, Buenos Aires, Argentina. Available online: https://new.abb.com/news/es/detail/7072/abb-y-the-economist-presentan-el-indice-automation-readiness-index-un-ranking-mundial-de-la-inteligencia-artificial-y-la-robotica (accessed on April 2023). (In Spanish).

Lins, R. G., & Givigi, S. N. (2021). Cooperative Robotics and Machine Learning for Smart Manufacturing: Platform Design and Trends within the Context of Industrial Internet of Things. IEEE Access, 9, 95444–95455. doi:10.1109/ACCESS.2021.3094374.

Ermolov, I. (2020). Industrial Robotics Review. Robotics: Industry 4.0 Issues & New Intelligent Control Paradigms. Studies in Systems, Decision and Control, 272. Springer, Cham, Switzerland. doi.org/10.1007/978-3-030-37841-7_16.

Modern Machine Shop. (2020). 2.7 million industrial robots deployed in factories around the world: IFR. Modern Machine Shop, Cincinnati, United States.

Mexico Industry. (2019). There are 4,500 industrial robots installed in SLP. Available online: https://mexicoindustry.com/ noticia/existen-4-500-robots-industriales-instalados-en-slp (accessed on April 2023). (In Spanish).

DataMexico. (2018). Industrial Robots: N.C.O.P: Commercial exchange, international purchases and sales, market and specialization. Available online: https://datamexico.org/es/profile/product/industrial-robots-nec?internationalBuysStartYear Selector2=2017&tradeBalanceSelector=2018 (accessed on April 2023).

Švaco, M., Jerbić, B., Župančić, I., Vitez, N., Šekoranja, B., Šuligoj, F., & Vidaković, J. (2019). The Case of Industrial Robotics in Croatia. Advances in Service and Industrial Robotics. RAAD 2018. Mechanisms and Machine Science, 67. Springer, Cham, Switzerland. doi:10.1007/978-3-030-00232-9_64.

Lopez-Caudana, E., Rodríguez-Abitia, G., Martínez-Pérez, S., Anton-Ares, P., & Ramírez-Montoya, M.-S. (2021). Scenarios of the use of robotics as a support tool for teaching. Ninth International Conference on Technological Ecosystems for Enhancing Multiculturality (TEEM’21), 38-43. doi:10.1145/3486011.3486416.

Márquez, B.Y. (2022). Unemployment in the Industry with the Arrival of Robotics in Mexico. Algorithms and Computational Techniques Applied to Industry. Studies in Systems, Decision and Control, 435. Springer, Cham, Switzerland. doi:10.1007/978-3-031-00856-6_8.

Savage, J., Weitzenfeld, A., & Morales, M. (2015). Promoting Robotics Development in Mexico. Available online: https://biorobotics.fi-p.unam.mx/wp-content/uploads/Publications/Papers/2015/icra_2015.pdf (accessed on April 2023).

Whitman, J., Zevallos, N., Travers, M., & Choset, H. (2018). Snake Robot Urban Search after the 2017 Mexico City Earthquake. 2018 IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR). doi:10.1109/ssrr.2018.8468633.

Panama News Agency. (2019). Panama has the opportunity to lead automation in Central America. Panama News Agency, Panama, Panama. Available online: https://anpanama.com/8577-Panama-tiene-la-oportunidad-de-liderar-la-automatizacion-en-America-Central.note.aspx (accessed on April 2023).

Sánchez, V. (2012). Robotics in Panama. Available online: https://sites.google.com/site/jua0696/robotica-en-panama (accessed on April 2023). (In Spanish).

Robótica Industrial. Available online: https://correagua.com/quienes-somos/ (accessed on April 2023). (In Spanish).

HUB News. (2019). Industrial Workshops S.A. Invest in robotics technology and environmentally friendly solutions. HUB News, Little Rock, United States. Available online: https://www.hub.com.pa/talleres-industriales-s-a-invierte-en-tecnologia-robotica-y-soluciones-amigables-al-medio-ambiente/ (accessed on April 2023). (In Spanish).

En Sgundos. (2022). Technology 4.0 and robotics, a reality in Latin America. Available: https://ensegundos.com.pa/2022/01/04/ tecnologia-4-0-y-robotica-una-realidad-en-america-latina/ (accessed on April 2023). (In Spanish).

Muñoz, L., Villarreal, V., Morales, I., Gonzalez, J., & Nielsen, M. (2020). Developing an interactive environment through the teaching of mathematics with small robots. Sensors (Switzerland), 20(7), 1935. doi:10.3390/s20071935.

The Heritage Foundation. (2022). Economic Freedom Status, Ranking 2022 - Republic of Panama. The Heritage Foundation, Washington, United States. Available online: https://www.heritage.org/index/country/panama (accessed on April 2023).

The Heritage Foundation. (2022). Economic Freedom Status, Ranking 2022 - Costa Rica 2022. The Heritage Foundation, Washington, United States. Available online: https://www.heritage.org/index/country/costarica (accessed on April 2023).

Coyol Free Zone. Coyol Free Zone: Awarded as Latin America Free Zone of the year 2021. Coyol Free Zone, Coyol Free Zone Alajuela, Provincia de Alajuela, Costa Rica. Available online: https://coyolfz.com/coyol-free-zone-awarded-as-latin-america-free-zone-of-the-year-2021 (accessed on April 2023).

Tecnológico de Costa Rica. Bachelor's Program in Mechatronics Engineering. Tecnológico de Costa Rica Cartago, Costa Rica. Available online: https://www.tec.ac.cr/programas-academicos/licenciatura-ingenieria-mecatronica (accessed on April 2023). (In Spanish).

TEC. (2023). Tecnológico de Costa Rica. Academic Offer. Tecnológico de Costa Rica Cartago, Costa Rica. Available online: https://www.tec.ac.cr/oferta-academica (accessed on April 2023). (In Spanish).

CINDE. (2023). Robots hold the key towards operating the factory of the future. CINDE, San Jose, Costa Rica. Available online: https://www.cinde.org/en/technologies/robotics (accessed on April 2023). (In Spanish).

The European. (2008). A network of knowledge. Chase Publishing Ltd, London, United Kingdom. Available online: https://the-european.eu/story-24763/a-network-of-knowledge.html (accessed on April 2023).

MicroTech. (2023). Why Costa Rica? Commonly Asked Questions. MicroTech, Coyol de Alajuela, Costa Rica. Available online: http://mic-tec.com/wp-content/uploads/2018/10/WhyCostaRica-Report.pdf (accessed on April 2023).

CINDE. (2023). Microtechnologies Costa Rica Manufactures Components for Ford’s Artificial Ventilators, San Jose, Costa Rica. Available online: https://www.cinde.org/en/essential-news/microtechnologies-costa-rica-manufactures-components-for-fords-artificial-ventilators (accessed on April 2023).

Manufactura Latam. (2017). Status and Perspectives of Industrial Robotics in Latin America. Manufactura Latam, Bogotá, Colombia. Available online: https://www.reporteroindustrial.com/temas/Estado-y-perspectivas-de-la-robotica-industrial-en-America-Latina+120880?pagina=2 (accessed on April 2023).

Revistamyt (2020). Robots will manufacture fiber cement in El Salvador. Available online: https://revistamyt.com/robots-fabricaran-fibrocemento-en-el-salvador/ (accessed on April 2023).

CINDE. (2023). The robots: the key to running the factory of the future. CINDE, San Jose, Costa Rica. Available online: https://www.cinde.org/es/tecnologias/robotica (accessed on April 2023). (In Spanish).

Haylock, K. (2018). Belizean students return from Robotics Competition in Mexico City. First Global, Geneva, Switzerland. Available online: https://first.global/es/in-the-news/belizean-students-return-from-robotics-competition-in-mexico-city/ (accessed on April 2023).

Auxillou, R., Pinzon, & Casado, M. (1998). Research team headed by Belizean is creating e-mail internet robots. Belize Development Trust, Caye Caulker, Belize. Available online: https://ambergriscaye.com/BzLibrary/trust15.html (accessed on April 2023).

The Heritage Foundation. (2022). Economic Freedom Status, Ranking 2022 - El Salvador. The Heritage Foundation, Washington, United States. Available online: https://www.heritage.org/index/country/elsalvador (accessed on April 2023).

SNI. (2023). Peruvian Industry in Figures, Lima, Peru. Available online: https://sni.org.pe/industria-peruana-cifras/ (accessed on April 2023). (In Spanish).

Ministry of Foreign Trade and Tourism. (2021). Trade Agreements of Peru, Pacific Alliance. Ministry of Foreign Trade and Tourism, Lima, Peru. Available online: http://www.acuerdoscomerciales.gob.pe/En_Vigencia/Alianza_Pacifico/inicio.html (accessed on April 2023).

Huanca, J., Zamora, J., Cornejo, J., & Palomares, R. (2022). Mechatronic Design and Kinematic Analysis of 8 DOF Serial Robot Manipulator to Perform Electrostatic Spray Painting Process on Electrical Panels. 2022 IEEE Engineering International Research Conference (EIRCON). doi:10.1109/eircon56026.2022.9934104.

Ari, A., Rojas, A., Cornejo, J., & Palomares, R. (2022). Mechatronic Design and Kinematic Analysis of Land-Based, Holonomic-Type and Mecanum-Wheeled Mobile Robot for Queue Management in Supermarkets. 2022 IEEE Engineering International Research Conference (EIRCON). doi:10.1109/eircon56026.2022.9934101.

Mejia, O., Nunez, D., Razuri, J., Cornejo, J., & Palomares, R. (2022). Mechatronics Design and Kinematic Simulation of 5 DOF Serial Robot Manipulator for Soldering THT Electronic Components in Printed Circuit Boards. First International Conference on Electrical, Electronics, Information and Communication Technologies (ICEEICT). doi:10.1109/iceeict53079.2022.9768447.

Cornejo, J., Cruz, V., Carrillo, F., Cerda, R., & Sanchez Penadillo, E. R. (2022). Mechatronics Design and Kinematic Simulation of SCARA Robot to improve Safety and Time Processing of Covid-19 Rapid Test. 2022 First International Conference on Electrical, Electronics, Information and Communication Technologies (ICEEICT). doi:10.1109/iceeict53079.2022.9768506.

Cornejo, J., Palacios, J., Escobar, A., & Torres, Y. (2022). Mechatronics Design and Kinematic Simulation of UTP-ISR01 Robot with 6-DOF Anthropomorphic Configuration for Flexible Wall Painting. 2022 First International Conference on Electrical, Electronics, Information and Communication Technologies (ICEEICT). doi:10.1109/iceeict53079.2022.9768599.

Hurtado, M., Marquez, J., Sotelo, P., Cornejo, J., & Palomares, R. (2022). Mechanic Design and Kinematic Simulation of Tri-Star Wheeled Mobile Robot for COVID-19 Using UV-C Disinfection for Public Transport. 2022 First International Conference on Electrical, Electronics, Information and Communication Technologies (ICEEICT). doi10.1109/iceeict53079.2022.9768432.

Cornejo, J., Cornejo-Aguilar, J. A., Vargas, M., Helguero, C. G., Milanezi de Andrade, R., Torres-Montoya, S., Asensio-Salazar, J., Rivero Calle, A., Martínez Santos, J., Damon, A., Quiñones-Hinojosa, A., Quintero-Consuegra, M. D., Umaña, J., … Russomano, T. (2022). Anatomical Engineering and 3D Printing for Surgery and Medical Devices: International Review and Future Exponential Innovations. BioMed Research International, 2022, 1–28. doi:10.1155/2022/6797745.

Cornejo, J., Cornejo-Aguilar, J. A., Gonzalez, C., & Sebastian, R. (2021). Mechanical and Kinematic Design of Surgical Mini Robotic Manipulator used into SP-LAP Multi-DOF Platform for Training and Simulation. 2021 IEEE XXVIII International Conference on Electronics, Electrical Engineering and Computing (INTERCON). doi:10.1109/intercon52678.2021.9532965.

Cornejo, J., Cornejo-Aguilar, J. A., Sebastian, R., Perales, P., Gonzalez, C., Vargas, M., & Elli, E. F. (2021). Mechanical Design of a Novel Surgical Laparoscopic Simulator for Telemedicine Assistance and Physician Training during Aerospace Applications. 2021 IEEE 3rd Eurasia Conference on Biomedical Engineering, Healthcare and Sustainability (ECBIOS). doi:10.1109/ecbios51820.2021.9510753.

Nope-Giraldo, R. M., Illapuma-Ccallo, L. A., Cornejo, J., Palacios, P., Napan, J. L., Cruz, F., Palomares, R., Cornejo-Aguilar, J. A., & Vargas, M. (2021). Mechatronic Systems Design of ROHNI-1: Hybrid Cyber-Human Medical Robot for COVID-19 Health Surveillance at Wholesale-Supermarket Entrances. 2021 Global Medical Engineering Physics Exchanges/Pan American Health Care Exchanges (GMEPE/PAHCE). doi:10.1109/gmepe/pahce50215.2021.9434874.

Rozas Llontop, D. A., Cornejo, J., Palomares, R., & Cornejo-Aguilar, J. A. (2020). Mechatronics Design and Simulation of Anthropomorphic Robotic Arm mounted on Wheelchair for Supporting Patients with Spastic Cerebral Palsy. 2020 IEEE International Conference on Engineering Veracruz (ICEV). doi:10.1109/icev50249.2020.9289665.

Cornejo, J., Perales-Villarroel, J. P., Sebastian, R., & Cornejo-Aguilar, J. A. (2020). Conceptual Design of Space Biosurgeon for Robotic Surgery and Aerospace Medicine. 2020 IEEE ANDESCON. doi:10.1109/andescon50619.2020.9272122.

Cornejo, J., Cornejo-Aguilar, J. A., & Palomares, R. (2019). Biomedik Surgeon: Surgical Robotic System for Training and Simulation by Medical Students in Peru. 2019 International Conference on Control of Dynamical and Aerospace Systems (XPOTRON). doi:10.1109/xpotron.2019.8705717.

Miller, D.P., & Nourbakhsh, I. (2016). Robotics for Education. Springer Handbook of Robotics. Springer Handbooks. Springer, Cham, Switzerland. doi:10.1007/978-3-319-32552-1_79.

Hsieh, S. J. (2019). Development and evaluation of remote virtual teach pendant for industrial robotics education. The International journal of engineering education, 35(6), 1816-1826.

Fonseca Ferreira, N. M., & Freitas, E. D. C. (2018). Computer applications for education on industrial robotic systems. Computer Applications in Engineering Education, 26(5), 1186–1194. doi:10.1002/cae.21982.

Dzedzickis, A., Subačiūtė-žemaitienė, J., Šutinys, E., Samukaitė-Bubnienė, U., & Bučinskas, V. (2022). Advanced applications of industrial robotics: New trends and possibilities. Applied Sciences (Switzerland), 12(1), 135. doi:10.3390/app12010135.

Dekle, R. (2020). Robots and industrial labor: Evidence from Japan. Journal of the Japanese and International Economies, 58, 101108. doi:10.1016/j.jjie.2020.101108.

Connolly, C. (2009). Technology and applications of ABB RobotStudio. Industrial Robot, 36(6), 540–545. doi:10.1108/01439910910994605.

World Robotics. (2018). Global industrial robot sales doubled over the past five years-World Robotics- Industrial Robot Report 2018 published. International Federation of Robotics (IFR), Frankfurt, Germany. Available online: https://ifr.org/ifr-press-releases/news/global-industrial-robot-sales-doubled-over-the-past-five-years (accessed on April 2023).

ABB. (2023). SWIFTI™ CRB 1100. ABB, Zürich, Switzerland. Available online: https://new.abb.com/products/robotics /robots/collaborative-robots/crb-1100-swifti (accessed on April 2023).

ABB. (2023). IRB 14050 YuMi® - One Arm. ABB, Zürich, Switzerland. Available online: https://new.abb.com/products/ robotics/robots/collaborative-robots/yumi/irb-14050-single-arm-yumi (accessed on April 2023).

ABB. (2023). GoFa™ CRB 15000. ABB, Zürich, Switzerland. Available online: https://webshop.robotics.abb.com/us/catalog/ product/view/id/243/s/gofa-crb-15000-assembly/category/3/ (accessed on April 2023).

Shepherd, S., & Buchstab, A. (2014). KUKA Robots On-Site. Robotic Fabrication in Architecture, Art and Design 2014. Springer, Cham, Switzerland. doi:10.1007/978-3-319-04663-1_26.

KUKA. KR180 R 3500 K. KUKA, Augsburg, Germany. Available online: https://www.kuka.com/-/media/kuka-downloads/imported/6b77eecacfe542d3b736af377562ecaa/0000188772_en.pdf?rev=93426325c1854c879ca20ea2bf6a634c&hash=CB979DBFFB7D12708EAEDF09DDDCFE62 (accessed on April 2023).

KUKA. (2023). KR 180 R3200 PA. KUKA, Augsburg, Germany. Available online: https://www.kuka.com/-/media/kuka-corporate/images/iimagazine/kuka_kr-quantec_palletieren_lebensmittel.jpg?rev=-1&w=1900&hash=889A2EFE23EC6D7B 318B7A2DE9D6D3C1 (accessed on April 2023).

Khaled, T. A., Akhrif, O., & Bonev, I. A. (2021). Dynamic Path Correction of an Industrial Robot Using a Distance Sensor and an ADRC Controller. IEEE/ASME Transactions on Mechatronics, 26(3), 1646–1656. doi:10.1109/TMECH.2020.3026994.

Mecademic Robotics. (2023). Meca500 Six-Axis Industrial Robot Arm. Mecademic Robotics, Montreal, Canada. Available online: https://www.mecademic.com/en/meca500-robot-arm (accessed on April 2023).

Mecademic Robotics. (2023). End-Effector and EOAT - Meca500. Mecademic Robotics, Montreal, Canada. Available online: https://www.mecademic.com/en/end-effectors (accessed on April 2023).

Mecademic Robotics. (2023). Accesories - Meca500. Mecademic Robotics, Montreal, Canada. Available online: https://www.mecademic.com/en/accessories (accessed on April 2023).

Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T., Leibs, J., Berger, E., Wheeler, R., & Ng, A. Y. (2009). ROS: an open-source Robot Operating System. ICRA workshop on open source software, 3(3.2), 12-17 May, 2009, Kobe, Japan.

Quigley, M., Berger, E., & Ng, A. Y. (2007). Stair: Hardware and software architecture. AAAI 2007 robotics workshop, August, 2007, Vancouver, Canada.

Open Robotics. Powering the world’s robots. Open Robotics, Mountain View, United States. Available online: https://www.openrobotics.org/ (accessed on April 2023).

K. Robot. TurtleBot. Available online: http://kobuki.yujinrobot.com/ (accessed on April 2023).

ROS. ROS 2 Documentation. Available online: https://docs.ros.org/en/foxy/index.html (accessed on April 2023).

Open Robotics. (2023). ROS 2 Design. Open Robotics, Mountain View, United States. Available online: https://design.ros2.org (accessed on April 2023).

Macenski, S., Martin, F., White, R., & Clavero, J. G. (2020). The Marathon 2: A Navigation System. 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). doi:10.1109/iros45743.2020.9341207.

GitHub. (2023). Ros-Planning/navigation2. GitHub, San Francisco, California, United States. Available online: https://github.com/ros-planning/navigation2 (accessed on April 2023).

Martin, F., Clavero, J. G., Matellan, V., & Rodriguez, F. J. (2021). PlanSys2: A Planning System Framework for ROS2. 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). doi:10.1109/iros51168.2021.9636544.

GitHub. (2023). ros2_planning_system. GitHub, San Francisco, California, United States. Available online: https://github.com/IntelligentRoboticsLabs/ros2_planning_system (accessed on April 2023).

Coleman, D., Sucan, I., Chitta, S., & Correll, N. (2014). Reducing the barrier to entry of complex robotic software: a moveit! Case study. arXiv preprint arXiv:1404.3785. doi:10.48550/arXiv.1404.3785.

GitHub. (2023). ros-planning/moveit. GitHub, San Francisco, California, United States. Available online: https://github.com/ros-planning/moveit (accessed on April 2023).

ROS-Industrial Consortium. Singapore. Available online: https://rosindustrial.org/ (accessed on April 2023).

Open Robotics. (2023). ROS for Agriculture. Open Robotics, Mountain View, United States. Available online: http://wiki.ros.org/agriculture (accessed on April 2023).

NASA. (2023). What is a Robonaut? National Aeronautics and Space Administration (NASAS), Washington, United States. Available online: https://www.nasa.gov/robonaut2/about.html (accessed on April 2023).

IEEE Spectrum. (2023). PR2. IEEE Spectrum, New York, United States. Available online: https://robots.ieee.org/robots/pr2/ (accessed on April 2023).

TurtleBot. (2023). TurtleBot2 Robot. Available online: https://www.turtlebot.com/turtlebot2/ (accessed on April 2023).

Santora, M. (2018). Clearpath Robotics offers ROS-enabled cobot arms from Universal Robots. The Robot Report, Santa Barbara, United States. Available online: https://www.therobotreport.com/clearpath-robotics-universal-robots-partner/ (accessed on April 2023).

Lu, Y. (2021). The Current Status and Developing Trends of Industry 4.0: a Review. Information Systems Frontiers. doi:10.1007/s10796-021-10221-w.

Brixner, C., Isaak, P., Mochi, S., Ozono, M., Suárez, D., & Yoguel, G. (2020). Back to the future. Is industry 4.0 a new tecno-organizational paradigm? Implications for Latin American countries. Economics of Innovation and New Technology, 29(7), 705–719. doi:10.1080/10438599.2020.1719642.

Ribeiro da Silva, E. H. D., Shinohara, A. C., Pinheiro de Lima, E., Angelis, J., & Machado, C. G. (2019). Reviewing digital manufacturing concept in the Industry 4.0 paradigm. Procedia CIRP, 81, 240–245. doi:10.1016/j.procir.2019.03.042.

Mendoza P., M. A., & Cuellar, S. (2020). Industry 4.0: Latin America SMEs Challenges. 2020 Congreso Internacional de Innovación y Tendencias En Ingeniería (CONIITI). doi:10.1109/coniiti51147.2020.9240428.

Makris, S. (2021). An Approach for Validating the Behavior of Autonomous Robots in a Virtual Environment. Cooperating Robots for Flexible Manufacturing. Springer Series in Advanced Manufacturing. Springer, Cham, Switzerland. doi:10.1007/978-3-030-51591-1_6.

Castillo, J. F., Ortiz, J. H., Velásquez, M. F. D., & Saavedra, D. F. (2021). COBOTS in industry 4.0: Safe and efficient interaction. Collaborative and humanoid robots, 3. IntechOpen, London, United Kingdom. doi:10.5772/intechopen.99540.

Baena, F., Guarin, A., Mora, J., Sauza, J., & Retat, S. (2017). Learning Factory: The Path to Industry 4.0. Procedia Manufacturing, 9, 73–80. doi:10.1016/j.promfg.2017.04.022.

Lima, F., De Carvalho, C. N., Acardi, M. B. S., Dos Santos, E. G., De Miranda, G. B., Maia, R. F., & Massote, A. A. (2019). Digital Manufacturing Tools in the Simulation of Collaborative Robots: Towards Industry 4.0. Brazilian Journal of Operations & Production Management, 16(2), 261–280. doi:10.14488/bjopm.2019.v16.n2.a8.

Suarez, D., & Yoguel, G. (2020). Latin American development and the role of technology: an introduction. Economics of Innovation and New Technology, 29(7), 661–669. doi:10.1080/10438599.2020.1715058.

Leesakul, N., Oostveen, A. M., Eimontaite, I., Wilson, M. L., & Hyde, R. (2022). Workplace 4.0: Exploring the Implications of Technology Adoption in Digital Manufacturing on a Sustainable Workforce. Sustainability (Switzerland), 14(6), 3311. doi:10.3390/su14063311.

Simone, V. D., Pasquale, V. D., Giubileo, V., & Miranda, S. (2022). Human-Robot Collaboration: an analysis of worker’s performance. Procedia Computer Science, 200, 1540–1549. doi:10.1016/j.procs.2022.01.355.

Ustundag, A., & Cevikcan, E. (2018). Industry 4.0: Managing the Digital Transformation. Springer Series in Advanced Manufacturing, Cham, Switzerland. doi:10.1007/978-3-319-57870-5.

Quiroga, O. D. (2022). Adoption of Advanced Technologies in Industrial Clusters. A Study in Latin American Industries. IFAC-PapersOnLine, 55(10), 1846–1851. doi:10.1016/j.ifacol.2022.09.667.

Benavente, J. M., Crespi, G., Katz, J., & Stumpo, G. (1997). New problems and opportunities for industrial development in Latin America. Oxford Development Studies, 25(3), 261–277. doi:10.1080/13600819708424135.

Weiss, A., Wortmeier, A. K., & Kubicek, B. (2021). Cobots in Industry 4.0: A Roadmap for Future Practice Studies on Human-Robot Collaboration. IEEE Transactions on Human-Machine Systems, 51(4), 335–345. doi:10.1109/THMS.2021.3092684.

Lucato, W. C., Pacchini, A. P. T., Facchini, F., & Mummolo, G. (2019). Model to evaluate the Industry 4.0 readiness degree in Industrial Companies. IFAC-PapersOnLine, 52(13), 1808–1813. doi:10.1016/j.ifacol.2019.11.464.

Treviño-Elizondo, B. L., & García-Reyes, H. (2021). The Challenge of Becoming a Worker 4.0–A Human-centered Maturity Model for Industry 4.0 Adoption. Proceedings of the 2021 IISE Annual Conference, 22-25 May, 2021, Montreal, Canada.

Barbosa, F., Woetzel, J., & Mischke, J. (2017). Reinventing construction: A route of higher productivity. McKinsey Global Institute, Atlanta, United States.

Kamaruddin, S. S., Mohammad, M. F., & Mahbub, R. (2016). Barriers and Impact of Mechanisation and Automation in Construction to Achieve Better Quality Products. Procedia - Social and Behavioral Sciences, 222, 111–120. doi:10.1016/j.sbspro.2016.05.197.

Urhal, P., Weightman, A., Diver, C., & Bartolo, P. (2019). Robot assisted additive manufacturing: A review. Robotics and Computer-Integrated Manufacturing, 59, 335–345. doi:10.1016/j.rcim.2019.05.005.

Petersen, K. H., Napp, N., Stuart-Smith, R., Rus, D., & Kovac, M. (2019). A review of collective robotic construction. Science Robotics, 4(28), 8479. doi:10.1126/scirobotics.aau8479.

Melenbrink, N., Werfel, J., & Menges, A. (2020). On-site autonomous construction robots: Towards unsupervised building. Automation in Construction, 119, 103312. doi:10.1016/j.autcon.2020.103312.

Onososen, A. O., Musonda, I., & Ramabodu, M. (2022). Construction Robotics and Human–Robot Teams Research Methods. Buildings, 12(8), 1192. doi:10.3390/buildings12081192.

Chui, M., & Mischke, J. (2019). The impact and opportunities of automation in construction. Voices. Global Infrastructure Initiative, McKinsey & Company, New York, United States.

Xu, X., & Garcia de Soto, B. (2020). On-site Autonomous Construction Robots: A review of Research Areas, Technologies, and Suggestions for Advancement. Proceedings of the International Symposium on Automation and Robotics in Construction (IAARC). doi:10.22260/isarc2020/0055.

Research and Markets. Aerospace Robotics Market Share, Size, Trends, Industry Analysis Report, By Solution; By Component; By Payload; By Application; By Region; Segment Forecast, 2022 - 2030. Research and Markets, Dublin, Ireland. Available online: https://www.researchandmarkets.com/reports/5598571/aerospace-robotics-market-share-size-trends (accessed on April 2023).

Nesnas, I. A. D., Fesq, L. M., & Volpe, R. A. (2021). Autonomy for Space Robots: Past, Present, and Future. Current Robotics Reports, 2(3), 251–263. doi:10.1007/s43154-021-00057-2.

Flores-Abad, A., Ma, O., Pham, K., & Ulrich, S. (2014). A review of space robotics technologies for on-orbit servicing. Progress in Aerospace Sciences, 68, 1–26. doi:10.1016/j.paerosci.2014.03.002.

Gao, Y., & Chien, S. (2017). Review on space robotics: Toward top-level science through space exploration. Science Robotics, 2(7), 5074. doi:10.1126/scirobotics.aan5074.

Mateo Sanguino, T. de J. (2017). 50 years of rovers for planetary exploration: A retrospective review for future directions. Robotics and Autonomous Systems, 94, 172–185. doi:10.1016/j.robot.2017.04.020.

Castaneda, E. A., Pineda Leon, R., & Cornejo, J. (2021). FEM and DEM Simulations of Tire-Soil and Drill-Soil Interactions in Off-Road Conditions for Mechanical Design Validation of a Space Exploration Rover. 2021 12th International Conference on Mechanical and Aerospace Engineering (ICMAE). doi:10.1109/icmae52228.2021.9522493.

Ellery, A. (2020). Tutorial review of bio-inspired approaches to robotic manipulation for space debris salvage. Biomimetics, 5(2), 19. doi:10.3390/BIOMIMETICS5020019.

Lopez-Arreguin, A. J. R., & Montenegro, S. (2020). Towards bio-inspired robots for underground and surface exploration in planetary environments: An overview and novel developments inspired in sand-swimmers. Heliyon, 6(6), 4148. doi:10.1016/j.heliyon.2020.e04148.

Banken, E., Schneider, V. E., Ben-Larbi, M. K., Pambaguian, L., & Oeffner, J. (2023). Biomimetic space debris removal: conceptual design of bio-inspired active debris removal scenarios. CEAS Space Journal, 15(1), 237–252. doi:10.1007/s12567-022-00438-z.

Chacin, M. (2013). Designing Robots for Gravity-Independent Locomotion. Asteroids. Springer, Berlin, Germany. doi:10.1007/978-3-642-39244-3_8.

Castaneda, E. A., Asmat, A. D., Pejerrey, M. J., Jara, C. M., Cabrejos, L. G., & Cornejo, J. (2022). Generative Design and DEM-FEA Simulations for Optimization and Validation of a Bio-Inspired Airless Tire-Wheel System for Land-Based Space Planetary Exploration Robot. 2022 International Conference on Advanced Robotics and Mechatronics (ICARM). doi:10.1109/icarm54641.2022.9959104.

Polaris Market Research. (2022). Aerospace Robotics Market Size Global Report, 2022 – 2030. Polaris Market Research, New York, United States. Available online: https://www.polarismarketresearch.com/industry-analysis/aerospace-robotics-market (accessed on April 2023).

Wang, Y. (2021). Space robotics. Springer, Singapore. doi:10.1007/978-981-15-4902-1.

Ajay Kumar, J. K., & Srinivas, G. (2019). Recent trends in Robots Smart Material and its application in Aeronautical and Aerospace Industries. Journal of Physics: Conference Series, 1172, 012035. doi:10.1088/1742-6596/1172/1/012035.

Ding, X. L., Wang, Y. C., Wang, Y. B., & Xu, K. (2021). A review of structures, verification, and calibration technologies of space robotic systems for on-orbit servicing. Science China Technological Sciences, 64(3), 462–480. doi:10.1007/s11431-020-1737-4.

Gao, Y. (2021). Space Robotics and Autonomous Systems: Technologies, advances and applications. The Institution of Engineering and Technology, London, United Kingdom. doi:10.1049/PBCE131E.

Siciliano, B., Khatib, O., & Kröger, T. (2008). Springer handbook of robotics. Springer, Cham, Switzerland. doi:10.1016/s1474-6670(17)47386-1.

Jenett, B., & Cheung, K. (2017). BILL-E: Robotic platform for locomotion and manipulation of lightweight space structures. 25th AIAA/AHS Adaptive Structures Conference, 2017, 1876. doi:10.2514/6.2017-1876.

NASA & JPL, (2022). "Perseverance Rover and WATSON," 2022. [Online]. Available: https://www.jpl.nasa.gov/.

Airbus. (2023). H245 A320 production line. Airbus, Marignane Cedex, France. Available online: https://www.airbus.com/en (accessed on April 2023).

Larrain, F. B., Lopez-Calva, L. F., & Rodriguez-Clare, A. (2000). Intel: A case study of foreign direct investment in Central America. CID Working Paper No. 58, Center for International Development at Harvard University, Cambridge, United States.

FAO. (2009). The State of Food and Agriculture. Food and Agriculture Organization of the United Nations (FAO), Rome, Italy. Available online: http://Http://www.fao.org/3/a-i0680e.pdf (accessed on April 2023).

Colizzi, L., Caivano, D., Ardito, C., Desolda, G., Castrignanò, A., Matera, M., Khosla, R., Moshou, D., Hou, K.-M., Pinet, F., Chanet, J.-P., Hui, G., & Shi, H. (2020). Introduction to agricultural IoT. Agricultural Internet of Things and Decision Support for Precision Smart Farming, 1–33, Academic Press, Cambridge, United States. doi:10.1016/b978-0-12-818373-1.00001-9.

Gonzalez-de-Soto, M., Emmi, L., Perez-Ruiz, M., Aguera, J., & Gonzalez-de-Santos, P. (2016). Autonomous systems for precise spraying – Evaluation of a robotised patch sprayer. Biosystems Engineering, 146, 165–182. doi:10.1016/j.biosystemseng.2015.12.018.

Pereira, F. M. V., Milori, D. M. B. P., Pereira-Filho, E. R., Venâncio, A. L., Russo, M. de S. T., Cardinali, M. C. do B., Martins, P. K., & Freitas-Astúa, J. (2011). Laser-induced fluorescence imaging method to monitor citrus greening disease. Computers and Electronics in Agriculture, 79(1), 90–93. doi:10.1016/j.compag.2011.08.002.

Rokhafrouz, M., Latifi, H., Abkar, A. A., Wojciechowski, T., Czechlowski, M., Naieni, A. S., Maghsoudi, Y., & Niedbała, G. (2021). Simplified and hybrid remote sensing-based delineation of management zones for nitrogen variable rate application in wheat. Agriculture (Switzerland), 11(11), 1104. doi:10.3390/agriculture11111104.

Tsouros, D. C., Bibi, S., & Sarigiannidis, P. G. (2019). A review on UAV-based applications for precision agriculture. Information (Switzerland), 10(11), 349. doi:10.3390/info10110349.

Martinez-Guanter, J., Agüera, P., Agüera, J., & Pérez-Ruiz, M. (2020). Spray and economics assessment of a UAV-based ultra-low-volume application in olive and citrus orchards. Precision Agriculture, 21(1), 226–243. doi:10.1007/s11119-019-09665-7.

Ali, A., & Imran, M. (2021). Remotely sensed real-time quantification of biophysical and biochemical traits of Citrus (Citrus sinensis L.) fruit orchards – A review. Scientia Horticulturae, 282, 110024. doi:10.1016/j.scienta.2021.110024.

Gonzalez-Dugo, V., Hernandez, P., Solis, I., & Zarco-Tejada, P. J. (2015). Using high-resolution hyperspectral and thermal airborne imagery to assess physiological condition in the context of wheat phenotyping. Remote Sensing, 7(10), 13586–13605. doi:10.3390/rs71013586.

Zarco-Tejada, P. J., González-Dugo, V., & Berni, J. A. J. (2012). Fluorescence, temperature and narrow-band indices acquired from a UAV platform for water stress detection using a micro-hyperspectral imager and a thermal camera. Remote Sensing of Environment, 117, 322–337. doi:10.1016/j.rse.2011.10.007.

West, J. S., Canning, G. G. M., Perryman, S. A., & King, K. (2017). Novel Technologies for the detection of Fusarium head blight disease and airborne inoculum. Tropical Plant Pathology, 42(3), 203–209. doi:10.1007/s40858-017-0138-4.

de Castro, A. I., Rallo, P., Suárez, M. P., Torres-Sánchez, J., Casanova, L., Jiménez-Brenes, F. M., Morales-Sillero, A., Jiménez, M. R., & López-Granados, F. (2019). High-Throughput System for the Early Quantification of Major Architectural Traits in Olive Breeding Trials Using UAV Images and OBIA Techniques. Frontiers in Plant Science, 10, 1472. doi:10.3389/fpls.2019.01472.

Barreto, R., Cornejo, J., Palomares, R., Cornejo, J. A., Suárez-Quispe, J. C., Vargas, M., Valenzuela, C., Chavez, J. C., & Valdivia, J. (2023). Space Agriculture and Mechatronic Technologies: Micro-Review and Multi-Collaborative Study. 2023 2nd International Conference for Innovation in Technology (INOCON). doi:10.1109/inocon57975.2023.10101312.

Barreto, R., Cornejo, J., Suarez-Quispe, J. C., & Ochoa, C. N. (2022). Conceptual Technical Design of 3-Dimension Rotational Clinostat for Microgravity Simulation focused on Agro-Engineering Applications for Small Plants Cultivation. 2022 IEEE XXIX International Conference on Electronics, Electrical Engineering and Computing (INTERCON), Lima, Peru. doi:10.1109/intercon55795.2022.9870112.

Barreto, R., Cornejo, J., Tacuri, D. O., & Cornejo-Aguilar, J. A. (2022). Agro-Engineering Methodology Analysis of Nutritional Values of Solanum Lycopersicum Var. Cerasiforme under Simulated Microgravity for Crop Applications during Spaceflight. 2022 IEEE XXIX International Conference on Electronics, Electrical Engineering and Computing (INTERCON), Lima, Peru. doi:10.1109/intercon55795.2022.9870076.

Valdivia-Silva, J. E., Navarro-González, R., Ortega-Gutierrez, F., Fletcher, L. E., Perez-Montaño, S., Condori-Apaza, R., & McKay, C. P. (2011). Multidisciplinary approach of the hyperarid desert of Pampas de La Joya in southern Peru as a new Mars-like soil analog. Geochimica et Cosmochimica Acta, 75(7), 1975–1991. doi:10.1016/j.gca.2011.01.017.

Cornejo, J., Palomares, R., Hernandez, M., Magallanes, D., & Gutierrez, S. (2022). Mechatronics Design and Kinematic Simulation of a Tripteron Cartesian-Parallel Agricultural Robot Mounted on 4-Wheeled Mobile Platform to Perform Seed Sowing Activity. 2022 First International Conference on Electrical, Electronics, Information and Communication Technologies (ICEEICT). doi:10.1109/iceeict53079.2022.9768422.

Conejero, M. N., Montes, H., Andujar, D., Bengochea-Guevara, J. M., & Ribeiro, A. (2023). Collaborative Harvest Robot. ROBOT2022: Fifth Iberian Robotics Conference. ROBOT 2022. Lecture Notes in Networks and Systems, 590. Springer, Cham, Switzerland. doi:10.1007/978-3-031-21062-4_3.

The World Bank. (2023). Agriculture, forestry, and fishing, value added (% of GDP) - Latin America & Caribbean. World Bank Group, Washington, United States. Available online: https://data.worldbank.org/indicator/NV.AGR.TOTL.ZS?locations=ZJ (accessed on April 2023).

Swarm Farm. Robotic Agriculture, Gindie, Australia. Available online: https://www.swarmfarm.com/ (accessed on April 2023).

Pérez-Ruiz, M., Gonzalez-de-Santos, P., Ribeiro, A., Fernandez-Quintanilla, C., Peruzzi, A., Vieri, M., Tomic, S., & Agüera, J. (2015). Highlights and preliminary results for autonomous crop protection. Computers and Electronics in Agriculture, 110, 150–161. doi:10.1016/j.compag.2014.11.010.

Gonzalez-de-Santos, P., Ribeiro, A., Fernandez-Quintanilla, C., Lopez-Granados, F., Brandstoetter, M., Tomic, S., Pedrazzi, S., Peruzzi, A., Pajares, G., Kaplanis, G., Perez-Ruiz, M., Valero, C., del Cerro, J., Vieri, M., Rabatel, G., & Debilde, B. (2016). Fleets of robots for environmentally-safe pest control in agriculture. Precision Agriculture, 18(4), 574–614. doi:10.1007/s11119-016-9476-3.

FLEXIGROBOTS. (2023). D5.1 Pilot 2 objectives, requirements and design. Available online: https://flexigrobots-h2020.eu/deliverables/d51-pilot-2-rapeseeds-objectives-requirements-and-design (accessed on April 2023).

Conesa-Muñoz, J., Gonzalez-de-Soto, M., Gonzalez-de-Santos, P., & Ribeiro, A. (2015). Distributed multi-level supervision to effectively monitor the operations of a fleet of autonomous vehicles in agricultural tasks. Sensors (Switzerland), 15(3), 5402–5428. doi:10.3390/s150305402.

Conesa-Muñoz, J., Bengochea-Guevara, J. M., Andujar, D., & Ribeiro, A. (2016). Route planning for agricultural tasks: A general approach for fleets of autonomous vehicles in site-specific herbicide applications. Computers and Electronics in Agriculture, 127, 204–220. doi:10.1016/j.compag.2016.06.012.

Conesa-Muñoz, J., Pajares, G., & Ribeiro, A. (2016). Mix-opt: A new route operator for optimal coverage path planning for a fleet in an agricultural environment. Expert Systems with Applications, 54, 364–378. doi:10.1016/j.eswa.2015.12.047.

Burns, E. (2018). Current state of AI is poorly understood by the public. TechTarget, Newton, United States

Jackson, P. C. (2019). Introduction to artificial intelligence. Courier Dover Publications, Mineola, United States. doi:10.18356/d94175df-en.

Russel, S., & Norvig, P. (2013). Artificial intelligence: a modern approach. Pearson Education Limited, London, United Kingdom.

WIRED. (2017). An Improved AlphaGo Wins Its First Game Against the World's Top Go Player. WIRED, New York, United States. Available online: https://www.wired.com/2017/05/revamped-alphago-wins-first-game-chinese-go-grandmaster/ (accessed on April 2023).

McKinsey & Company. (2021). Global survey: The state of AI in 2021. McKinsey & Company, New York, United States. Available online: https://www.mckinsey.com/capabilities/quantumblack/our-insights/global-survey-the-state-of-ai-in-2021 (accessed on April 2023).

Murphy, R. R. (2019). Introduction to AI robotics. MIT Press, Cambridge, United States.

Raj, M., & Seamans, R. (2019). Primer on artificial intelligence and robotics. Journal of Organization Design, 8(1), 1-14. doi:10.1186/s41469-019-0050-0.

Müller, V. C. (2020). Ethics of artificial intelligence and robotics. Stanford Encyclopedia of Philosophy, California, United States.

Matheson, E., Minto, R., Zampieri, E. G. G., Faccio, M., & Rosati, G. (2019). Human-robot collaboration in manufacturing applications: A review. Robotics, 8(4), 100. doi:10.3390/robotics8040100.

Gómez Mont, C., Del Pozo, C. M., del Campo Alcocer, M., & Victoria, A. (2020). Artificial intelligence for social good in Latin America and the Caribbean: The regional landscape and 12 country snapshots. Inter-American Development Bank, Washington, United States.

Ashrafian, H. (2015). AIonAI: A Humanitarian Law of Artificial Intelligence and Robotics. Science and Engineering Ethics, 21(1), 29–40. doi:10.1007/s11948-013-9513-9.

Kunze, L., Hawes, N., Duckett, T., Hanheide, M., & Krajnik, T. (2018). Artificial Intelligence for Long-Term Robot Autonomy: A Survey. IEEE Robotics and Automation Letters, 3(4), 4023–4030. doi:10.1109/LRA.2018.2860628.

Wang, W., & Siau, K. (2019). Artificial Intelligence, Machine Learning, Automation, Robotics, Future of Work and Future of Humanity. Journal of Database Management, 30(1), 61–79. doi:10.4018/jdm.2019010104.

MIT Technology Review Insights. (2018). The global AI agenda: Latin America. MIT Technology Review, Cambridge, United States. Available online: https://www.technologyreview.com/2020/06/08/1002864/the-global-ai-agenda-latin-america/ (accessed on April 2023).

Turner, J. (2018). Robot rules: Regulating artificial intelligence. Palgrave Macmillan, Cham, Switzerland. doi:10.1007/978-3-319-96235-1.

Aoun, J. E. (2017). Robot-proof: Higher education in the age of artificial intelligence. MIT Press, Cambridge, United States. doi:10.7551/mitpress/11456.001.0001.


Full Text: PDF

DOI: 10.28991/ESJ-2023-07-04-025

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 José Cornejo, Salvador Barrera, César Alonso Herrera Ruiz, Francisco G. Gutierrez, Marcelo Oscar Casasnovas, Leonardo Kot, Miguel A. Solis, Roberto Larenas, Felipe Castro-Nieny, Mario Ricardo Arbulú Saavedra, Ruthber Rodríguez Serrezuela, Yeison Muñoz Londoño, Alejandro Serna, David Ortega-Aranda, Sinaí Aranda-Miramontes, Ignacio Chang, Manuel Cardona, Arys Carrasquilla-Batista, Ricardo Palomares, Ricardo Rodriguez, Ruben Parisuaña, Miguel Bórquez, Oscar Navarro, Fernando Sanchez, Ilian A. Bonev, Jonathan Coulombe, Francisco Martín Rico, Bertha Leticia Treviño-Elizondo, Heriberto García-Reyes, Aldo Sollazzo, Alexandre Dubor, Areti Markopoulou, Cecilia De Marinis, Marco Chacin, Andres Mora, Manuel Pérez-Ruiz, Angela Ribeiro, E. André L'Huillier