An Optimized Machine Learning and Deep Learning Framework for Facial and Masked Facial Recognition
Abstract
Doi: 10.28991/ESJ-2023-07-04-010
Full Text: PDF
Keywords
References
Khel, M. H. K., Kadir, K., Albattah, W., Khan, S., Noor, M. N. M. M., Nasir, H., ... & Khan, A. (2021). Real-time monitoring of COVID-19 SOP in public gathering using deep learning technique. Emerging Science Journal, 5(Special issue), 182-196. doi:10.28991/esj-2021-SPER-14.
Damer, N., Boutros, F., Süßmilch, M., Kirchbuchner, F., & Kuijper, A. (2021). Extended evaluation of the effect of real and simulated masks on face recognition performance. IET Biometrics, 10(5), 548–561. doi:10.1049/bme2.12044.
Alzu’bi, A., Albalas, F., Al-Hadhrami, T., Younis, L. B., & Bashayreh, A. (2021). Masked face recognition using deep learning: A review. Electronics (Switzerland), 10(21), 2666. doi:10.3390/electronics10212666.
Ullah, N., Javed, A., Ali Ghazanfar, M., Alsufyani, A., & Bourouis, S. (2022). A novel DeepMaskNet model for face mask detection and masked facial recognition. Journal of King Saud University - Computer and Information Sciences, 34(10), 9905–9914. doi:10.1016/j.jksuci.2021.12.017.
Ejaz, Md. S., Islam, Md. R., Sifatullah, M., & Sarker, A. (2019). Implementation of Principal Component Analysis on Masked and Non-masked Face Recognition. 2019 1st International Conference on Advances in Science, Engineering and Robotics Technology (ICASERT). doi:10.1109/icasert.2019.8934543.
Maharani, D. A., Machbub, C., Rusmin, P. H., & Yulianti, L. (2020). Improving the Capability of Real-Time Face Masked Recognition using Cosine Distance. 2020 6th International Conference on Interactive Digital Media (ICIDM), Bandung, Indonesia. doi:10.1109/icidm51048.2020.9339677.
Montero, D., Nieto, M., Leskovsky, P., & Aginako, N. (2022). Boosting Masked Face Recognition with Multi-Task ArcFace. 2022 16th International Conference on Signal-Image Technology & Internet-Based Systems (SITIS), Dijon, France. doi:10.1109/sitis57111.2022.00042.
Hariri, W. (2022). Efficient masked face recognition method during the COVID-19 pandemic. Signal, Image and Video Processing, 16(3), 605–612. doi:10.1007/s11760-021-02050-w.
Boutros, F., Damer, N., Kirchbuchner, F., & Kuijper, A. (2022). Self-restrained triplet loss for accurate masked face recognition. Pattern Recognition, 124, 108473. doi:10.1016/j.patcog.2021.108473.
Golwalkar, R., & Mehendale, N. (2022). Masked-face recognition using deep metric learning and FaceMaskNet-21. Applied Intelligence, 52(11), 13268–13279. doi:10.1007/s10489-021-03150-3.
Hong, J. H., Kim, H., Kim, M., Nam, G. P., Cho, J., Ko, H.-S., & Kim, I.-J. (2021). A 3d Model-Based Approach For Fitting Masks To Faces In The Wild. 2021 IEEE International Conference on Image Processing (ICIP), Anchorage, AK, USA. doi:10.1109/icip42928.2021.9506069.
Ejaz, Md. S., & Islam, Md. R. (2019). Masked Face Recognition Using Convolutional Neural Network. 2019 International Conference on Sustainable Technologies for Industry 4.0 (STI). doi:10.1109/sti47673.2019.9068044.
Deng, H., Feng, Z., Qian, G., Lv, X., Li, H., & Li, G. (2021). MFCosface: a masked-face recognition algorithm based on large margin cosine loss. Applied Sciences (Switzerland), 11(16), 7310. doi:10.3390/app11167310.
Li, Y., Guo, K., Lu, Y., & Liu, L. (2021). Cropping and attention based approach for masked face recognition. Applied Intelligence, 51(5), 3012–3025. doi:10.1007/s10489-020-02100-9.
Moungsouy, W., Tawanbunjerd, T., Liamsomboon, N., & Kusakunniran, W. (2022). Face recognition under mask-wearing based on residual inception networks. Applied Computing and Informatics, 1-14. doi:10.1108/ACI-09-2021-0256.
Talahua, J. S., Buele, J., Calvopina, P., & Varela-Aldas, J. (2021). Facial recognition system for people with and without face mask in times of the covid-19 pandemic. Sustainability (Switzerland), 13(12), 6900. doi:10.3390/su13126900.
Song, Z., Nguyen, K., Nguyen, T., Cho, C., & Gao, J. (2022). Spartan Face Mask Detection and Facial Recognition System. Healthcare (Switzerland), 10(1), 87. doi:10.3390/healthcare10010087.
Kim, M., Jain, A. K., & Liu, X. (2022). AdaFace: Quality Adaptive Margin for Face Recognition. 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). doi:10.1109/cvpr52688.2022.01819.
Deng, J., Guo, J., Xue, N., & Zafeiriou, S. (2019). ArcFace: Additive Angular Margin Loss for Deep Face Recognition. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). doi:10.1109/cvpr.2019.00482.
Wang, H., Wang, Y., Zhou, Z., Ji, X., Gong, D., Zhou, J., Li, Z., & Liu, W. (2018). CosFace: Large Margin Cosine Loss for Deep Face Recognition. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. doi:10.1109/cvpr.2018.00552.
Lu, H., & Zhuang, Z. (2022). ULN: An efficient face recognition method for person wearing a mask. Multimedia Tools and Applications, 81(29), 42393–42411. doi:10.1007/s11042-022-13495-7.
Ge, Y., Liu, H., Du, J., Li, Z., & Wei, Y. (2023). Masked face recognition with convolutional visual self-attention network. Neurocomputing, 518, 496–506. doi:10.1016/j.neucom.2022.10.025.
Wang, Y., Li, Y., & Zou, H. (2023). Masked Face Recognition System Based on Attention Mechanism. Information (Switzerland), 14(2), 87. doi:10.3390/info14020087.
Zhang, K., Zhang, Z., Li, Z., & Qiao, Y. (2016). Joint Face Detection and Alignment Using Multitask Cascaded Convolutional Networks. IEEE Signal Processing Letters, 23(10), 1499–1503. doi:10.1109/LSP.2016.2603342.
Schroff, F., Kalenichenko, D., & Philbin, J. (2015). FaceNet: A unified embedding for face recognition and clustering. 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). doi:10.1109/cvpr.2015.7298682.
Elgeldawi, E., Sayed, A., Galal, A. R., & Zaki, A. M. (2021). Hyperparameter tuning for machine learning algorithms used for arabic sentiment analysis. Informatics, 8(4), 79. doi:10.3390/informatics8040079.
Jiang, X., & Xu, C. (2022). Deep Learning and Machine Learning with Grid Search to Predict Later Occurrence of Breast Cancer Metastasis Using Clinical Data. Journal of Clinical Medicine, 11(19), 5772. doi:10.3390/jcm11195772.
Saad, M. H., Hashima, S., Sayed, W., El-Shazly, E. H., Madian, A. H., & Fouda, M. M. (2023). Early Diagnosis of COVID-19 Images Using Optimal CNN Hyperparameters. Diagnostics, 13(1), 76. doi:10.3390/diagnostics13010076.
Zöller, M. A., & Huber, M. F. (2021). Benchmark and Survey of Automated Machine Learning Frameworks. Journal of Artificial Intelligence Research, 70, 409–472. doi:10.1613/JAIR.1.11854.
Tahkola, M., & Guangrong, Z. (2022). ATSC-NEX: Automated Time Series Classification With Sequential Model-Based Optimization and Nested Cross-Validation. IEEE Access, 10, 39299–39312. doi:10.1109/ACCESS.2022.3166525.
Wainer, J., & Cawley, G. (2021). Nested cross-validation when selecting classifiers is overzealous for most practical applications. Expert Systems with Applications, 182, 115222. doi:10.1016/j.eswa.2021.115222.
Shorten, C., & Khoshgoftaar, T. M. (2019). A survey on Image Data Augmentation for Deep Learning. Journal of Big Data, 6(1). doi:10.1186/s40537-019-0197-0.
Peng, S., Huang, H., Chen, W., Zhang, L., & Fang, W. (2020). More trainable inception-ResNet for face recognition. Neurocomputing, 411, 9–19. doi:10.1016/j.neucom.2020.05.022.
Yi, D., Lei, Z., Liao, S., & Li, S. Z. (2014). Learning Face Representation from Scratch. doi:10.48550/arXiv.1411.7923.
Huang, G. B., Mattar, M., Berg, T., & Learned-Miller, E. (2008). Labeled faces in the wild: A database for studying face recognition in unconstrained environments. Workshop on faces in 'Real-Life' Images: detection, alignment, and recognition, 17-20 October, 2008, Marseille, France.
Kaur, A., & Kaur, I. (2018). An empirical evaluation of classification algorithms for fault prediction in open source projects. Journal of King Saud University - Computer and Information Sciences, 30(1), 2–17. doi:10.1016/j.jksuci.2016.04.002.
Chen, S., He, H., & Garcia, E. A. (2010). RAMOBoost: Ranked minority oversampling in boosting. IEEE Transactions on Neural Networks, 21(10), 1624–1642. doi:10.1109/TNN.2010.2066988.
Khamparia, A., & Singh, K. M. (2019). A systematic review on deep learning architectures and applications. Expert Systems, 36(3), e12400. doi:10.1111/exsy.12400.
Krstajic, D., Buturovic, L. J., Leahy, D. E., & Thomas, S. (2014). Cross-validation pitfalls when selecting and assessing regression and classification models. Journal of Cheminformatics, 6(1), 1–15. doi:10.1186/1758-2946-6-10.
Fayed, H. A., & Atiya, A. F. (2019). Speed up grid-search for parameter selection of support vector machines. Applied Soft Computing Journal, 80, 202–210. doi:10.1016/j.asoc.2019.03.037.
DOI: 10.28991/ESJ-2023-07-04-010
Refbacks
- There are currently no refbacks.