Utilization of Microalgae in Aquaculture System: Biological Wastewater Treatment

Kyochan Kim, Joo-Young Jung, Hyon-Sob Han


We recently developed an autotrophic biofloc technology (ABFT) system entailing simultaneous microalgae co-culturing with juvenile-farming-stage fish and shrimp in aquaculture and microalgae-based water treatment. The present study was conducted to confirm the potentialities of the ABFT system at the remaining stages (seedling to adult farming, Nile tilapia) for industrial-level implementation. In the results at the seedling stage, an excellent water-purification effect and significant water conservation (97% reduction) by microalgae were verified. Indeed, among the fish, there were not any significant differences, either in growth performance or in body composition, and the wastewater from this system was recycled by use for the growth of various plants. Further, the ABFT system was demonstrated to have a positive effect on production economics by simplifying the production process steps (simultaneous fish breeding and wastewater treatment) and providing for a natural hatching environment. In summary, the ABFT system can be integrated with existing systems on an industrial level as an effective and efficient means of achieving sustainable aquaculture.


Microalgae; Biological Water Treatment; Natural Production Environment; Sustainable Aquaculture System.


A. L. Gonçalves, J. C. M. Pires, and M. Simões, "A review on the use of microalgal consortia for wastewater treatment", Algal Research 24 (2017): 403-415. doi: 10.1016/j.algal.2016.11.008.

E. Posadas, M. d. M. Morales, C. Gomez, F. G. Acién, and R. Muñoz, "Influence of pH and CO2 source on the performance of microalgae-based secondary domestic wastewater treatment in outdoors pilot raceways", Chemical Engineering Journal 265 (2015): 239-248. doi: 10.1016/j.cej.2014.12.059.

D. Conway, E. A. van Garderen, D. Deryng, S. Dorling, T. Krueger, W. Landman, B. Lankford, K. Lebek, T. Osborn, C. Ringler, J. Thurlow, T. Zhu, and C. Dalin, "Climate and southern Africa's water–energy–food nexus", Nature Climate Change 5, no. 9 (2015): 837-846. doi: 10.1038/nclimate2735.

M. Falkenmark, and J. Rockström, "Balancing water for humans and nature: the new approach in ecohydrology", Earthscan, London (2004).

M. I. Queiroz, E. J. Lopes, L. Q. Zepka, R. G. Bastos, and R. Goldbeck, "The kinetics of the removal of nitrogen and organic matter from parboiled rice effluent by cyanobacteria in a stirred batch reactor", Bioresource Technology 98, no. 11 (2007): 2163-2169. doi: 10.1016/j.biortech.2006.08.034.

N. Renuka, A. Sood, S. K. Ratha, R. Prasanna, and A. S. Ahluwalia, "Evaluation of microalgal consortia for treatment of primary treated sewage effluent and biomass production", Journal of Applied Phycology 25, no. 5 (2013): 1529-1537. doi: 10.1007/s10811-013-9982-x.

A. Bhatnagar, and M. Sillanpää, "Utilization of agro-industrial and municipal waste materials as potential adsorbents for water treatment—A review", Chemical Engineering Journal 157, no. 2-3 (2010): 277-296. doi: 10.1016/j.cej.2010.01.007.

E. Posadas, S. Bochon, M. Coca, M. C. García-González, P. A. García-Encina, and R. Muñoz, "Microalgae-based agro-industrial wastewater treatment: a preliminary screening of biodegradability", Journal of Applied Phycology 26, no. 6 (2014): 2335-2345. doi: 10.1007/s10811-014-0263-0.

O. Hammouda, A. Gaber, and N. Abdel-Raouf, "Microalgae and wastewater treatment", Ecotoxicology and Environmental safety 31, no. 3 (1995): 205-210. doi: 10.1006/eesa.1995.1064.

S. Ge, P. Champagne, W. C. Plaxton, G. B. Leite, and F. Marazzi, "Microalgal cultivation with waste streams and metabolic constraints to triacylglycerides accumulation for biofuel production", Biofuels, Bioproducts and Biorefining 11, no. 2 (2017): 325-343. doi: 10.1002/bbb.1726.

J.-H. Hwang, J. Church, S.-J. Lee, J. Park, and W. H. Lee, "Use of Microalgae for Advanced Wastewater Treatment and Sustainable Bioenergy Generation", Environmental Engineering Science 33, no. 11 (2016): 882-897. doi: 10.1089/ees.2016.0132.

S. P. Cuellar-Bermudez, G. S. Aleman-Nava, R. Chandra, J. S. Garcia-Perez, J. R. Contreras-Angulo, G. Markou, K. Muylaert, B. E. Rittmann, and R. Parra-Saldivar, "Nutrients utilization and contaminants removal. A review of two approaches of algae and cyanobacteria in wastewater", Algal Research 24 (2017): 438-449. doi: 10.1016/j.algal.2016.08.018.

A. M. Rada-Ariza, C. M. Lopez-Vazquez, N. P. van der Steen, and P. N. L. Lens, "Nitrification by microalgal-bacterial consortia for ammonium removal in flat panel sequencing batch photo-bioreactors", Bioresource Technology 245, no. Pt A (2017): 81-89. doi: 10.1016/j.biortech.2017.08.019.

G. Quijano, J. S. Arcila, and G. Buitron, "Microalgal-bacterial aggregates: Applications and perspectives for wastewater treatment", Biotechnology Advances 35, no. 6 (2017): 772-781. doi: 10.1016/j.biotechadv.2017.07.003.

N. Neveux, M. Magnusson, T. Maschmeyer, R. de Nys, and N. A. Paul, "Comparing the potential production and value of high-energy liquid fuels and protein from marine and freshwater macroalgae", Global Change Biology Bioenergy 7, no. 4 (2015): 673-689. doi: 10.1111/gcbb.12171.

S. Ge, and P. Champagne, "Cultivation of the Marine Macroalgae Chaetomorpha linum in Municipal Wastewater for Nutrient Recovery and Biomass Production", Environmental science & technology 51, no. 6 (2017): 3558-3566. doi: 10.1021/acs.est.6b06039.

N. Neveux, M. Magnusson, L. Mata, A. Whelan, R. de Nys, and N. A. Paul, "The treatment of municipal wastewater by the macroalga Oedogonium sp. and its potential for the production of biocrude", Algal Research 13 (2016): 284-292. doi: 10.1016/j.algal.2015.12.010.

M. T. Díaz, C. Pérez, C. I. Sánchez, S. Lauzurica, V. Cañeque, C. González, and J. De La Fuente, "Feeding microalgae increases omega 3 fatty acids of fat deposits and muscles in light lambs", Journal of Food Composition and Analysis 56 (2017): 115-123. doi: 10.1016/j.jfca.2016.12.009.

A. Solovchenko, A. M. Verschoor, N. D. Jablonowski, and L. Nedbal, "Phosphorus from wastewater to crops: An alternative path involving microalgae", Biotechnology Advances 34, no. 5 (2016): 550-564. doi: 10.1016/j.biotechadv.2016.01.002.

B. S. M. Sturm, and S. L. Lamer, "An energy evaluation of coupling nutrient removal from wastewater with algal biomass production", Applied Energy 88, no. 10 (2011): 3499-3506. doi: 10.1016/j.apenergy.2010.12.056.

N. Drira, A. Piras, A. Rosa, S. Porcedda, and H. Dhaouadi, "Microalgae from domestic wastewater facility's high rate algal pond: Lipids extraction, characterization and biodiesel production", Bioresource Technology 206 (2016): 239-244. doi: 10.1016/j.biortech.2016.01.082.

C. Xin, M. M. Addy, J. Zhao, Y. Cheng, S. Cheng, D. Mu, Y. Liu, R. Ding, P. Chen, and R. Ruan, "Comprehensive techno-economic analysis of wastewater-based algal biofuel production: A case study", Bioresource Technology 211 (2016): 584-593. doi: 10.1016/j.biortech.2016.03.102.

I.-S. Yang, E.-S. Salama, J.-O. Kim, S. P. Govindwar, M. B. Kurade, M. Lee, H.-S. Roh, and B.-H. Jeon, "Cultivation and harvesting of microalgae in photobioreactor for biodiesel production and simultaneous nutrient removal", Energy Conversion and Management 117 (2016): 54-62. doi: 10.1016/j.enconman.2016.03.017.

Y. Shen, J. Gao, and L. Li, "Municipal wastewater treatment via co-immobilized microalgal-bacterial symbiosis: Microorganism growth and nutrients removal", Bioresource Technology 243 (2017): 905-913. doi: 10.1016/j.biortech.2017.07.041.

S. K. Prajapati, P. Choudhary, A. Malik, and V. K. Vijay, "Algae mediated treatment and bioenergy generation process for handling liquid and solid waste from dairy cattle farm", Bioresource Technology 167 (2014): 260-268. doi: 10.1016/j.biortech.2014.06.038.

C. M. Kuo, J. F. Jian, T. H. Lin, Y. B. Chang, X. H. Wan, J. T. Lai, J. S. Chang, and C. S. Lin, "Simultaneous microalgal biomass production and CO2 fixation by cultivating Chlorella sp. GD with aquaculture wastewater and boiler flue gas", Bioresource Technology 221 (2016): 241-250. doi: 10.1016/j.biortech.2016.09.014.

S. Van Den Hende, V. Beelen, G. Bore, N. Boon, and H. Vervaeren, "Up-scaling aquaculture wastewater treatment by microalgal bacterial flocs: from lab reactors to an outdoor raceway pond", Bioresource Technology 159 (2014): 342-354. doi: 10.1016/j.biortech.2014.02.113.

F. Gao, C. Li, Z.-H. Yang, G.-M. Zeng, L.-J. Feng, J.-z. Liu, M. Liu, and H.-w. Cai, "Continuous microalgae cultivation in aquaculture wastewater by a membrane photobioreactor for biomass production and nutrients removal", Ecological Engineering 92 (2016): 55-61. doi: 10.1016/j.ecoleng.2016.03.046.

S. J. Chun, Y. Cui, C. Y. Ahn, and H. M. Oh, "Improving water quality using settleable microalga Ettlia sp. and the bacterial community in freshwater recirculating aquaculture system of Danio rerio", Algal Research 135 (2018): 112-121. doi: 10.1016/j.watres.2018.02.007.

E.-S. Salama, M. B. Kurade, R. A. I. Abou-Shanab, M. M. El-Dalatony, I.-S. Yang, B. Min, and B.-H. Jeon, "Recent progress in microalgal biomass production coupled with wastewater treatment for biofuel generation", Renewable and Sustainable Energy Reviews 79 (2017): 1189-1211. doi: 10.1016/j.rser.2017.05.091.

F. Bux, "Biotechnological applications of microalgae: biodiesel and value-added products", CRC Press, Boca Raton, Florida (2013).

J.-Y. Jung, J. H. Damusaru, Y. Park, K. Kim, M. Seong, H.-W. Je, S. Kim, and S. C. Bai, "Autotrophic biofloc technology system (ABFT) using Chlorella vulgaris and Scenedesmus obliquus positively affects performance of Nile tilapia (Oreochromis niloticus)", Algal Research 27 (2017): 259-264. doi: 10.1016/j.algal.2017.09.021.

J. Y. Jung, H. Lee, W. S. Shin, M. G. Sung, J. H. Kwon, and J. W. Yang, "Utilization of seawater for cost-effective cultivation and harvesting of Scenedesmus obliquus", Bioprocess and Biosystems Engineering 38, no. 3 (2015): 449-455. doi: 10.1007/s00449-014-1284-4.

AOAC, "Official Methods of Analysis", 16th ed., Association of Official Analytical Chemists, Arlington, Virginia (1995).

J. Folch, Lees, M., and G. H. Sloane Stanley, "A simple method for the isolation and purification of total lipides from animal tissues", The Journal of Biological Chemistry 226, no. 1 (1957): 497-509.

R. H. Pierce, J. M. Weeks, and J. M. Prappas, "Nitrate toxicity to five species of marine fish", Journal of World Aquaculture Society 24 (1993): 105-107. doi: 10.1111/j.1749-7345.1993.tb00156.x

J. Davidson, C. Good, C. Welsh, and S. T. Summerfelt, "Comparing the effects of high vs. low nitrate on the health, performance, and welfare of juvenile rainbow trout Oncorhynchus mykiss within water recirculating aquaculture systems", Aquacultural Engineering 59 (2014): 30-40. doi: 10.1016/j.aquaeng.2014.01.003.

I. Y, C. S, L. I, J. Y, L. C, and W. R, "The sleeper Bostrichthys sinensis (Family Eleotridae) stores glutamine and reduces ammonia production during aerial exposure", Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology 171, no. 5 (2001): 357-367. doi: 10.1007/s003600100184.

D. J. Randall, and T. K. N. Tsui, "Ammonia toxicity in fish", Marine Pollution Bulletin 45 (2002): 17-23. doi: 10.1016/S0025-326X(02)00227-8.

Z. Svobodova, R. Lloyd, and J. Machova, "Water quality and fish health", Food and Agriculture Organization of the United Nations, Roma, Italy (1993).

D. W. Huey, B. A. Simco, and D. W. Criswell, "Nitrite-induced methemoglobin formation in channel catfish", Transactions of the American Fisheries Society 109 (1980): 558-562. doi: 10.1577/1548-8659(1980)109<558:NMFICC>2.0.CO;2.

J. R. Tomasso, A. S. B, and K. B. Davis, "Chloride inhibition of nitrite-induced methemoglobinemia in channel catfish (Ictalurus punctatus)", Journal of the Fisheries Research Board of Canada 36 (1979): 1141-1144. doi: 10.1139/f79-160.

F. B. Eddy, and E. M. Williams, "Nitrite and Freshwater Fish", Chemistry and Ecology 3, no. 1 (1987): 1-38. doi: 10.1080/02757548708070832.

S.-Y. Cheng, and J.-C. Chen, "Study on the oxyhemocyanin, deoxyhemocyanin, oxygen affinity and acid–base balance of Marsupenaeus japonicus following exposure to combined elevated nitrite and nitrate", Aquatic Toxicology 61 (2002): 181-193. doi: 10.1016/S0166-445X(02)00053-X.

P. S. Furtado, B. R. Campos, F. P. Serra, M. Klosterhoff, L. A. Romano, and W. Wasielesky, "Effects of nitrate toxicity in the Pacific white shrimp, Litopenaeus vannamei, reared with biofloc technology (BFT)", Aquaculture International 23, no. 1 (2014): 315-327. doi: 10.1007/s10499-014-9817-z.

J. A. Camargo, A. Alonso, and A. Salamanca, "Nitrate toxicity to aquatic animals: a review with new data for freshwater invertebrates", Chemosphere 58, no. 9 (2005): 1255-1267. doi: 10.1016/j.chemosphere.2004.10.044.

T. L. Welker, C. Lim, M. Yildirim-Aksoy, and P. H. Klesius, "Susceptibility of Nile tilapia (Oreochromis niloticus) fed with dietary sodium chloride to nitrite toxicity", Aquaculture International 20, no. 1 (2011): 159-176. doi: 10.1007/s10499-011-9449-5.

T. Sesuk, S. Powtongsook, and K. Nootong, "Inorganic nitrogen control in a novel zero-water exchanged aquaculture system integrated with airlift-submerged fibrous nitrifying biofilters", Bioresource Technology 100, no. 6 (2009): 2088-2094. doi: 10.1016/j.biortech.2008.10.027.

H. Y. Yildiz, G. Köksal, G. Borazan, and Ç. K. Benli, "Nitrite-induced methemoglobinemia in Nile tilapia, Oreochromis niloticus", Journal of Applied Ichthyology 22, no. 5 (2006): 427-426. doi: 10.1111/j.1439-0426.2006.00761.x.

A. Ç. K. BENLİ, and G. KÖKSAL, "The Acute Toxicity of Ammonia on Tilapia (Oreochromis niloticus L.) Larvae and Fingerlings", Turkish Journal of Veterinary and Animal Sciences 29, no. 2 (2005): 339-344.

J. J. Evans, D. J. Pasnik, G. C. Brill, and P. H. Klesius, "Un-ionized ammonia exposure in Nile tilapia: toxicity, stress response, and susceptibility to Streptococcus agalactiae", North American Journal of Aquaculture 68, no. 1 (2006): 23-33.

L. Cao, T. Zhou, Z. Li, J. Wang, J. Tang, R. Ruan, and Y. Liu, "Effect of combining adsorption-stripping treatment with acidification on the growth of Chlorella vulgaris and nutrient removal from swine wastewater", Bioresource Technology 263 (2018): 10-16. doi: 10.1016/j.biortech.2018.04.094.

H. Wang, H. Xiong, Z. Hui, and X. Zeng, "Mixotrophic cultivation of Chlorella pyrenoidosa with diluted primary piggery wastewater to produce lipids", Bioresource Technology 104 (2012): 215-220. doi: 10.1016/j.biortech.2011.11.020.

M. H. Abolhasani, N. Pirestani, A. Nehbandani, and B. Sanatinia, "Nutrient removal from municipal wastewater using mixture of two algae, Scenedesmus obliquus and Chlorella vulgaris", International Journal of Aquatic Science 9, no. 1 (2018): 44-50.

L. E. de-Bashan, M. Moreno, J.-P. Hernandez, and Y. Bashan, "Removal of ammonium and phosphorus ions from syntheticwastewater by the microalgae Chlorella vulgaris coimmobilized in alginate beads with the microalgae growth-promoting bacterium Azospirillum brasilense", Water Research 36 (2002): 2941-2948.

M. K. Ji, H. C. Kim, V. R. Sapireddy, H. S. Yun, R. A. Abou-Shanab, J. Choi, W. Lee, T. C. Timmes, Inamuddin, and B. H. Jeon, "Simultaneous nutrient removal and lipid production from pretreated piggery wastewater by Chlorella vulgaris YSW-04", Applied microbiology and biotechnology 97, no. 6 (2013): 2701-2710. doi: 10.1007/s00253-012-4097-x.

F. B. Bajestani, N. Moshtaghi, and F. Talebi, "Using of Chlorella Vulgaris for Livestock Wastewater Treatmentand the Expression of NR Gene", Journal of Global Pharma Technology 12, no. 8 (2016): 278-289.

A. Vadlamani, S. Viamajala, B. Pendyala, and S. Varanasi, "Cultivation of Microalgae at Extreme Alkaline pH Conditions: A Novel Approach for Biofuel Production", ACS Sustainable Chemistry & Engineering 5, no. 8 (2017): 7284-7294. doi: 10.1021/acssuschemeng.7b01534.

B. Hu, M. Min, W. Zhou, Z. Du, M. Mohr, P. Chen, J. Zhu, Y. Cheng, Y. Liu, and R. Ruan, "Enhanced mixotrophic growth of microalga Chlorella sp. on pretreated swine manure for simultaneous biofuel feedstock production and nutrient removal", Bioresource Technology 126 (2012): 71-79. doi: 10.1016/j.biortech.2012.09.031.

Y. Su, A. Mennerich, and B. Urban, "Comparison of nutrient removal capacity and biomass settleability of four high-potential microalgal species", Bioresource Technology 124 (2012): 157-162. doi: 10.1016/j.biortech.2012.08.037.

Q. Zhang, T. Wang, and Y. Hong, "Investigation of initial pH effects on growth of an oleaginous microalgae Chlorella sp. HQ for lipid production and nutrient uptake", Water Science & Technology 70, no. 4 (2014): 712-719. doi: 10.2166/wst.2014.285.

J. M. Ebeling, M. B. Timmons, and J. J. Bisogni, "Engineering analysis of the stoichiometry of photoautotrophic, autotrophic, and heterotrophic removal of ammonia–nitrogen in aquaculture systems", Aquaculture 257, no. 1-4 (2006): 346-358.

S. Leu, and S. Boussiba, "Advances in the Production of High-Value Products by Microalgae", Industrial Biotechnology 10, no. 3 (2014): 169-183. doi: 10.1089/ind.2013.0039.

J. J. Milledge, "Commercial application of microalgae other than as biofuels: a brief review", Reviews in Environmental Science and Bio/Technology 10, no. 1 (2010): 31-41. doi: 10.1007/s11157-010-9214-7.

H. Furbeyre, J. van Milgen, T. Mener, M. Gloaguen, and E. Labussiere, "Effects of dietary supplementation with freshwater microalgae on growth performance, nutrient digestibility and gut health in weaned piglets", Animal 11, no. 2 (2017): 183-192. doi: 10.1017/S1751731116001543.

G. C. Maliwat, S. Velasquez, J. L. Robil, M. Chan, R. F. Traifalgar, M. Tayamen, and J. A. Ragaza, "Growth and immune response of giant freshwater prawn Macrobrachium rosenbergii (De Man) postlarvae fed diets containing Chlorella vulgaris (Beijerinck)", Aquaculture Research 48, no. 4 (2017): 1666-1676. doi: 10.1111/are.13004.

E. Vossen, K. Raes, D. Van Mullem, and S. De Smet, "Production of docosahexaenoic acid (DHA) enriched loin and dry cured ham from pigs fed algae: Nutritional and sensory quality", European Journal of Lipid Science and Technology 119, no. 5 (2017): doi: 10.1002/ejlt.201600144.

M. Namaei Kohal, A. Esmaeili Fereidouni, F. Firouzbakhsh, and I. Hayati, "Effects of dietary incorporation of Arthrospira (Spirulina) platensis meal on growth, survival, body composition, and reproductive performance of red cherry shrimp Neocaridina davidi (Crustacea, Atyidae) over successive spawnings", Journal of Applied Phycology 30, no. 1 (2017): 431-443. doi: 10.1007/s10811-017-1220-5.

A. R. Ribeiro, A. Gonçalves, M. Barbeiro, N. Bandarra, M. L. Nunes, M. L. Carvalho, J. Silva, J. Navalho, M. T. Dinis, T. Silva, and J. Dias, "Phaeodactylum tricornutum in finishing diets for gilthead seabream: effects on skin pigmentation, sensory properties and nutritional value", Journal of Applied Phycology 29, no. 4 (2017): 1945-1956. doi: 10.1007/s10811-017-1125-3.

F. Zhong, W. Liang, T. Yu, S. P. Cheng, F. He, and Z. B. Wu, "Removal efficiency and balance of nitrogen in a recirculating aquaculture system integrated with constructed wetlands", Journal of Environmental Science and Health Part A 46, no. 7 (2011): 789-794. doi: 10.1080/10934529.2011.571974.

J. van Rijn, "Waste treatment in recirculating aquaculture systems", Aquacultural Engineering 53 (2013): 49-56. doi: 10.1016/j.aquaeng.2012.11.010.

S. C. Wuang, M. C. Khin, P. Q. D. Chua, and Y. D. Luo, "Use of Spirulina biomass produced from treatment of aquaculture wastewater as agricultural fertilizers", Algal Research 15 (2016): 59-64. doi: 10.1016/j.algal.2016.02.009.

M. M. Addy, F. Kabir, R. Zhang, Q. Lu, X. Deng, D. Current, R. Griffith, Y. Ma, W. Zhou, P. Chen, and R. Ruan, "Co-cultivation of microalgae in aquaponic systems", Bioresource Technology 245, no. Pt A (2017): 27-34. doi: 10.1016/j.biortech.2017.08.151.

F. A. Faheed, and Z. A. Fattah, "Effect of Chlorella vulgaris as bio-fertilizer on growth parameters and metabolic aspects of lettuce plant", Journal of Agriculture and Social Sciences (Pakistan) (2008): 165–169.

K. M. Buzby, and L.-S. Lin, "Scaling aquaponic systems: Balancing plant uptake with fish output", Aquacultural Engineering 63 (2014): 39-44. doi: 10.1016/j.aquaeng.2014.09.002.

D. C. Love, M. S. Uhl, and L. Genello, "Energy and water use of a small-scale raft aquaponics system in Baltimore, Maryland, United States", Aquacultural Engineering 68 (2015): 19-27. doi: 10.1016/j.aquaeng.2015.07.003.

Z. Hu, J. W. Lee, K. Chandran, S. Kim, A. C. Brotto, and S. K. Khanal, "Effect of plant species on nitrogen recovery in aquaponics", Bioresource Technology 188 (2015): 92-98. doi: 10.1016/j.biortech.2015.01.013.

S. Goddek, B. Delaide, U. Mankasingh, K. Ragnarsdottir, H. Jijakli, and R. Thorarinsdottir, "Challenges of Sustainable and Commercial Aquaponics", Sustainability 7, no. 4 (2015): 4199-4224. doi: 10.3390/su7044199.

H. Haridas, A. K. Verma, G. Rathore, C. Prakash, P. B. Sawant, and A. M. Babitha Rani, "Enhanced growth and immuno-physiological response of Genetically Improved Farmed Tilapia in indoor biofloc units at different stocking densities", Aquaculture Research 48, no. 8 (2017): 4346-4355. doi: 10.1111/are.13256.

T. Barnharst, A. Rajendran, and B. Hu, "Bioremediation of synthetic intensive aquaculture wastewater by a novel feed-grade composite biofilm", International Biodeterioration & Biodegradation 126 (2018): 131-142. doi: 10.1016/j.ibiod.2017.10.007.

K. Kim, Y. Park, H.-W. Je, M. Seong, J. H. Damusaru, S. Kim, J.-Y. Jung, and S. C. Bai, "Tuna byproducts as a fish-meal in tilapia aquaculture", Ecotoxicology and Environmental safety 172 (2019): 364-372.

Full Text: PDF

DOI: 10.28991/esj-2019-01183


  • There are currently no refbacks.

Copyright (c) 2019 Kyochan Kim, Joo-Young Jung, Hyon-Sob Han