Concentration of B-CG and sFlt-1 in Rattus Norvegicus Model of Preeclampsia with Swimming Exercise Treatment

Oktalia Sabrida, Muslim Akmal, Sri Wahyuni, Khairan Khairan, Gholib Gholib

Abstract


Preeclampsia (PE) is a life-threatening pregnancy complication for the mother and fetus. High concentrations of human chorionic gonadotrophin (hCG) and soluble fms-like tyrosine kinase-1 (sFLt-1) during pregnancy may have a role in the pathophysiology of PE. Swimming Exercise (SE) is one of the physical activities recommended for pregnant women and carries a minimal risk. This study is aimed at analyzing the interaction between the conditions of rats (normal and PE), the onset of PE (early onset and late onset), and the time of SE (SE 0 minutes; SE 5 minutes; SE 10 minutes) on the concentrations of B-CG and sFlt-1 in the Rattus norvegicus (R. norvegicus) model of PE. 72 R. norvegicus were included in this study and divided into 12 experimental groups (each group n = 6 individuals). R. norvegicus PE was prepared by inducing L-Nitro-Arginine-Methyl Ester (L-NAME) at a 75 mg/kg BW/day dose. The determination of PE was supported by the observation of differences in the values of urine protein (PU), urine glucose (GU), and urine leukocytes (LU) in R. norvegicus before and after injection of L-NAME. The three-factorial statistical test showed a significant interaction between the concentration of B-CG and the condition of R. norvegicus, the onset of PE, and the time of SE, with a p-value <0.001. The three-factorial statistical test also showed a significant interaction between the sFLt-1 concentration and the condition of R. norvegicus, the onset of PE, and the time of SE with p<0.05. The difference in the concentration of B-CG and sFLt-1 R. norvegicus in each treatment group was influenced by the condition of the rats (normal and PE), the onset of PE (early onset and late onset), and the time of SE (SE 0 minutes; SE 5 minutes; SE 10 minutes). Research related to SE on PE still needs to be continued to decide on recommendations on whether SE can be used as a preventive measure in complementary midwifery care for preventing and reducing symptoms of PE in pregnancy.

 

Doi: 10.28991/ESJ-2023-07-03-021

Full Text: PDF


Keywords


Preeclampsia; Early Onset; Late Onset; L-NAME; B-CG; sFlt-1; Swimming Exercise.

References


Jena, M. K., Sharma, N. R., Petitt, M., Maulik, D., & Nayak, N. R. (2020). Pathogenesis of preeclampsia and therapeutic approaches targeting the placenta. Biomolecules, 10(6), 1–28. doi:10.3390/biom10060953.

Taravati, A., & Tohidi, F. (2018). Comprehensive analysis of oxidative stress markers and antioxidants status in preeclampsia. Taiwanese Journal of Obstetrics and Gynecology, 57(6), 779–790. doi:10.1016/j.tjog.2018.10.002.

Chen, Y., Xue, F., Han, C., Yang, H., Han, L., Li, K., Li, J., Xu, Q., Li, Z., Yuan, B., Yu, L., Gao, X., & Yan, Y. (2019). Ferulic acid ameliorated placental inflammation and apoptosis in rat with preeclampsia. Clinical and Experimental Hypertension, 41(6), 524–530. doi:10.1080/10641963.2018.1516773.

Eastabrook, G., Aksoy, T., Bedell, S., Penava, D., & de Vrijer, B. (2018). Preeclampsia biomarkers: An assessment of maternal cardiometabolic health. Pregnancy Hypertension, 13, 204–213. doi:10.1016/j.preghy.2018.06.005.

Kerley, R. N., & McCarthy, C. (2018). Biomarkers of glomerular dysfunction in pre-eclampsia – A systematic review. Pregnancy Hypertension, 14, 265–272. doi:10.1016/j.preghy.2018.03.002.

Norris, W., Nevers, T., Sharma, S., & Kalkunte, S. (2011). Review: hCG, preeclampsia and regulatory T cells. Placenta, 32, S182–S185.doi:10.1016/j.placenta.2011.01.009.

Barjaktarovic, M., Korevaar, T. I. M., Jaddoe, V. W. V., de Rijke, Y. B., Peeters, R. P., & Steegers, E. A. P. (2019). Human chorionic gonadotropin and risk of pre-eclampsia: prospective population-based cohort study. Ultrasound in Obstetrics and Gynecology, 54(4), 477–483. doi:10.1002/uog.20256.

Phung, J., Paul, J., & Smith, R. (2020). Maintenance of Pregnancy and Parturition. Maternal-Fetal and Neonatal Endocrinology, 169–187, Academic Press, Cambridge, Massachusetts, United States. doi:10.1016/b978-0-12-814823-5.00013-1.

Birdir, C., Droste, L., Fox, L., Frank, M., Fryze, J., Enekwe, A., Köninger, A., Kimmig, R., Schmidt, B., & Gellhaus, A. (2018). Predictive value of sFlt-1, PlGF, sFlt-1/PlGF ratio and PAPP-A for late-onset preeclampsia and IUGR between 32 and 37 weeks of pregnancy. Pregnancy Hypertension, 12, 124–128. doi:10.1016/j.preghy.2018.04.010.

Zeisler, H., Llurba, E., Chantraine, F. J., Vatish, M., Staff, A. C., Sennström, M., Olovsson, M., Brennecke, S. P., Stepan, H., Allegranza, D., Schoedl, M., Grill, S., Hund, M., & Verlohren, S. (2019). Soluble fms-like tyrosine kinase-1 to placental growth factor ratio: ruling out pre-eclampsia for up to 4 weeks and value of retesting. Ultrasound in Obstetrics and Gynecology, 53(3), 367–375. doi:10.1002/uog.19178.

Gurnadi, J. I., Mose, J., Handono, B., Satari, M. H., Anwar, A. D., Fauziah, P. N., Yogi Pramatirta, A., & Rihibiha, D. D. (2015). Difference of concentration of placental soluble fms-like tyrosine kinase-1(sFlt-1), placental growth factor (PlGF), and sFlt-1/PlGF ratio in severe preeclampsia and normal pregnancy. BMC Research Notes, 8(1). doi:10.1186/s13104-015-1506-0.

Mochan, S., Bhatla, N., Luthra, K., Kumar, R., Dwivedi, S., Sharma, A., & Dhingra, R. (2018). Role of sVEGFR (sFlt-1) in inducing endoplasmic reticulum stress in trophoblast cells and its status in preeclampsia. Journal of the Anatomical Society of India, 67(2), 93–103. doi:10.1016/j.jasi.2018.11.003.

Klein, C. P., dos Santos Rodrigues, K., Hözer, R. M., de Sá Couto-Pereira, N., Saccomori, A. B., Dal Magro, B. M., Crestani, M. S., Hoppe, J. B., Salbego, C. G., Dalmaz, C., & Matté, C. (2018). Swimming exercise before and during pregnancy: Promising preventive approach to impact offspring´s health. International Journal of Developmental Neuroscience, 71, 83–93. doi:10.1016/j.ijdevneu.2018.08.009.

Okafor, U. B., & Goon, D. Ter. (2020). Physical activity and exercise during pregnancy in Africa: a review of the literature. BMC Pregnancy and Childbirth, 20(1), 1–17. doi:10.1186/s12884-020-03439-0.

Ferrari, N., & Joisten, C. (2021). Impact of physical activity on course and outcome of pregnancy from pre- to postnatal. European Journal of Clinical Nutrition, 75(12), 1698–1709. doi:10.1038/s41430-021-00904-7.

Omar, J. S., Jaradat, N., Qadoumi, M., & Qadoumi, A. N. (2021). Regular swimming exercise improves metabolic syndrome risk factors: a quasi-experimental study. BMC Sports Science, Medicine and Rehabilitation, 13(1), 1–7. doi:10.1186/s13102-021-00254-8.

Cancela-Carral, J. M., Blanco, B., & López-Rodríguez, A. (2022). Therapeutic Aquatic Exercise in Pregnancy: A Systematic Review and Meta-Analysis. Journal of Clinical Medicine, 11(3). doi:10.3390/jcm11030501.

Activity, P., & Pregnancy, E. D. (2020). Physical Activity and Exercise during Pregnancy and the Postpartum Period: ACOG Committee Opinion, Number 804. Obstetrics and Gynecology, 135(4), E178–E188. doi:10.1097/AOG.0000000000003772.

Zhu, H., Zhu, W., Hu, R., Wang, H., Ma, D., & Li, X. (2017). The effect of pre-eclampsia-like syndrome induced by L-NAME on learning and memory and hippocampal glucocorticoid receptor expression: A rat model. Hypertension in Pregnancy, 36(1), 36–43. doi:10.1080/10641955.2016.1228957.

Amaral, T. A. S., Ognibene, D. T., Carvalho, L. C. R. M., Rocha, A. P. M., Costa, C. A., Moura, R. S., & Resende, A. C. (2018). Differential responses of mesenteric arterial bed to vasoactive substances in L-NAME-induced preeclampsia: Role of oxidative stress and endothelial dysfunction. Clinical and Experimental Hypertension, 40(2), 126–135. doi:10.1080/10641963.2017.1339073.

Kucuk, M., Ugur Yilmaz, C., Orhan, N., Ahishali, B., Arican, N., Elmas, I., Gürses, C., & Kaya, M. (2018). The Effects of Lipopolysaccharide on the Disrupted Blood-Brain Barrier in a Rat Model of Preeclampsia. Journal of Stroke and Cerebrovascular Diseases, 27(12), 3411–3418. doi:10.1016/j.jstrokecerebrovasdis.2018.08.003.

Selivanova, E. K., Shvetsova, A. A., Borzykh, A. A., Gaynullina, D. K., Kiryukhina, O. O., Lukoshkova, E. V., Potekhina, V. M., Kuzmin, V. S., & Tarasova, O. S. (2021). Intrauterine l-name exposure weakens the development of sympathetic innervation and induces the remodeling of arterial vessels in two-week-old rats. International Journal of Molecular Sciences, 22(22). doi:10.3390/ijms222212327.

Mellembakken, J. R., Aukrust, P., Olafsen, M. K., Ueland, T., Hestdal, K., & Videm, V. (2002). Activation of leukocytes during the uteroplacental passage in preeclampsia. Hypertension, 39(1), 155–160. doi:10.1161/hy0102.100778.

Lee, J., Ouh, Y., Ahn, K. H., Hong, S. C., Oh, M.-J., Kim, H.-J., & Cho, G. J. (2017). Preeclampsia: A risk factor for gestational diabetes mellitus in subsequent pregnancy. PLOS ONE, 12(5), e0178150. doi:10.1371/journal.pone.0178150.

Fishel Bartal, M., Lindheimer, M. D., & Sibai, B. M. (2022). Proteinuria during pregnancy: definition, pathophysiology, methodology, and clinical significance. American Journal of Obstetrics and Gynecology, 226(2), S819–S834. doi:10.1016/j.ajog.2020.08.108.

Oliveira, M. de, Lima, V. M., Yamashita, S. M. A., Alves, P. S., & Portella, A. C. (2018). Experimental Planning Factorial: A brief Review. International Journal of Advanced Engineering Research and Science, 5(6), 166–177. doi:10.22161/ijaers.5.6.28.

Liu, L., Zuo, K., Le, W., Lu, M., Liu, Z., & Xu, W. (2022). Non-diabetic urine glucose in idiopathic membranous nephropathy. Renal Failure, 44(1), 1104–1111. doi:10.1080/0886022X.2022.2094806.

Yang, Y., & Wu, N. (2022). Gestational Diabetes Mellitus and Preeclampsia: Correlation and Influencing Factors. Frontiers in Cardiovascular Medicine, 9, 831297. doi:10.3389/fcvm.2022.831297.

Mellembakken, J. R., Aukrust, P., Hestdal, K., Ueland, T., Åbyholm, T., & Videm, V. (2001). Chemokines and leukocyte activation in the fetal circulation during preeclampsia. Hypertension, 38(3), 394–398. doi:10.1161/01.HYP.38.3.394.

Chambers, A. E., Griffin, C., Naif, S. A., Mills, I., Mills, W. E., Syngelaki, A., Nicolaides, K. H., & Banerjee, S. (2012). Quantitative ELISAs for serum soluble LHCGR and hCG-LHCGR complex: Potential diagnostics in first trimester pregnancy screening for stillbirth, Down’s syndrome, preterm delivery and preeclampsia. Reproductive Biology and Endocrinology, 10(113), 1–14. doi:10.1186/1477-7827-10-113.

Makey, K. L., Patterson, S. G., Robinson, J., Loftin, M., Waddell, D. E., Miele, L., Chinchar, E., Huang, M., Smith, A. D., Weber, M., & Gu, J. W. (2013). Increased plasma levels of soluble vascular endothelial growth factor receptor 1 (sFlt-1) in women by moderate exercise and increased plasma levels of vascular endothelial growth factor in overweight/obese women. European Journal of Cancer Prevention, 22(1), 83–89. doi:10.1097/CEJ.0b013e328353ed81.

Ancatén González, C., Gutiérrez-Rojas, C., & Bustamante Valdés, C. (2017). Maternal exercise reverses morphologic changes in amygdala neurons produced by prenatal stress. Neurology Psychiatry and Brain Research, 24, 36–42. doi:10.1016/j.npbr.2017.04.004.

Netto, A. O., Gelaleti, R. B., Corvino, S. B., Serrano, R. G., Hernández, S. C., Volpato, G. T., Rudge, M. V. C., Braz, M. G., & Damasceno, D. C. (2018). Small-for-pregnancy-age rats submitted to exercise: DNA damage in mothers and newborns, measured by the comet assay. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 835, 11–15. doi:10.1016/j.mrgentox.2018.08.006.

Jang, Y., Lee, B., Kim, E. K., Shim, W. S., Yang, Y. D., & Kim, S. M. (2018). Involuntary swimming exercise in pregnant rats disturbs ERK1/2 signaling in embryonic neurons through increased cortisol in the amniotic fluid. Biochemical and Biophysical Research Communications, 495(1), 1208–1213. doi:10.1016/j.bbrc.2017.11.153.

Juhl, M., Kogevinas, M., Andersen, P. K., Andersen, A. M. N., & Olsen, J. (2010). Is swimming during pregnancy a safe exercise? Epidemiology, 21(2), 253–258. doi:10.1097/EDE.0b013e3181cb6267.


Full Text: PDF

DOI: 10.28991/ESJ-2023-07-03-021

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Oktalia - Sabrida, Muslim - Akmal, Sri - Wahyuni, Khairan - Khairan