Taguchi Experiment Design for DES K2CO3-Glycerol Performance in RBDPO Transesterification

Susila Arita, Leily Nurul Komariah, Winny Andalia, Fitri Hadiah, Cindi Ramayanti


Biodiesel production using novel glycerol and potassium carbonate-based catalysts has not been developed under the Taguchi technique. This study aims to determine the most influential parameter in biodiesel production from refined bleach-deodorized palm oil (RBDPO) using DES K2CO3-Glycerol as the novel catalyst. The raw material was subjected to transesterification at the desired reaction parameters estimated by the orthogonal 16-run (L16) approach with 2 levels and 4 factors of the Taguchi technique. Signal-to-noise ratio (SNR) and ANOVA were used to confirm the predicted value. From the results, the catalyst is the most influential variable in the TG value of biodiesel, placed in the first rank of the influence factor. Biodiesel production with a minimum total glycerol value (0.210%) using DES K2CO3-Glycerol as a catalyst is most optimally produced at 95 °C for 4 h and 400 rpm using 30 wt% methanol and 4 wt% catalysts achieved by the Taguchi technique. The biodiesel obtained from RBDPO complies with the required international standards.


Doi: 10.28991/ESJ-2023-07-03-018

Full Text: PDF


Biodiesel; Deep Eutectic Solvent; Orthogonal Array; Taguchi Method; Optimization.


Taslim, Iriany, Bani, O., Parinduri, S. Z. D. M., & Ningsih, P. R. W. (2018). Biodiesel production from rice bran oil by transesterification using heterogeneous catalyst natural zeolite modified with K2CO3. IOP Conference Series: Materials Science and Engineering, 309, 012107. doi:10.1088/1757-899x/309/1/012107.

Bargole, S. S., Singh, P. K., George, S., & Saharan, V. K. (2021). Valorisation of low fatty acid content waste cooking oil into biodiesel through transesterification using a basic heterogeneous calcium-based catalyst. Biomass and Bioenergy, 146, 105984. doi:10.1016/j.biombioe.2021.105984.

Parida, S. (2021). Improving heterogeneously catalyzed transesterification reaction for biodiesel production using ultrasound energy and petro-diesel as cosolvent. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 1–13. doi:10.1080/15567036.2021.1889723.

Mizik, T., & Gyarmati, G. (2021). Economic and Sustainability of Biodiesel Production—A Systematic Literature Review. Clean Technologies, 3(1), 19–36. doi:10.3390/cleantechnol3010002.

Talha, N. S., & Sulaiman, S. (2016). Overview of catalysts in biodiesel production. ARPN Journal of Engineering and Applied Sciences, 11(1), 439-442.

Atadashi, I. M., Aroua, M. K., Abdul Aziz, A. R., & Sulaiman, N. M. N. (2013). The effects of catalysts in biodiesel production: A review. Journal of Industrial and Engineering Chemistry, 19(1), 14–26. https://doi.org/10.1016/j.jiec.2012.07.009.

Gan, P. G., Sam, S. T., Abdullah, M. F., Omar, M. F., & Tan, L. S. (2020). An alkaline deep eutectic solvent based on potassium carbonate and glycerol as pretreatment for the isolation of cellulose nanocrystals from empty fruit bunch. BioResources, 15(1), 1154–1170. doi:10.15376/biores.15.1.1154-1170.

García, G., Aparicio, S., Ullah, R., & Atilhan, M. (2015). Deep eutectic solvents: Physicochemical properties and gas separation applications. Energy and Fuels, 29(4), 2616–2644. doi:10.1021/ef5028873.

Zhang, Q., De Oliveira Vigier, K., Royer, S., & Jérôme, F. (2012). Deep eutectic solvents: Syntheses, properties and applications. Chemical Society Reviews, 41(21), 7108–7146. doi:10.1039/c2cs35178a.

Rodriguez Rodriguez, N., MacHiels, L., & Binnemans, K. (2019). P-Toluenesulfonic Acid-Based Deep-Eutectic Solvents for Solubilizing Metal Oxides. ACS Sustainable Chemistry and Engineering, 7(4), 3940–3948. doi:10.1021/acssuschemeng.8b05072.

Naser, J., Mjalli, F., Jibril, B., Al-Hatmi, S., & Gano, Z. (2013). Potassium Carbonate as a Salt for Deep Eutectic Solvents. International Journal of Chemical Engineering and Applications, January, 114–118. doi:10.7763/ijcea.2013.v4.275.

Sakti, A. S., Saputri, F. C., & Mun’im, A. (2019). Optimization of choline chloride-glycerol based natural deep eutectic solvent for extraction bioactive substances from Cinnamomum burmannii barks and Caesalpinia sappan heartwoods. Heliyon, 5(12), 2915. doi:10.1016/j.heliyon.2019.e02915.

Clarke, C. J., Tu, W. C., Levers, O., Bröhl, A., & Hallett, J. P. (2018). Green and Sustainable Solvents in Chemical Processes. Chemical Reviews, 118(2), 747–800. doi:10.1021/acs.chemrev.7b00571.

Faraone, A., Wagle, D. V., Baker, G. A., Novak, E. C., Ohl, M., Reuter, D., Lunkenheimer, P., Loidl, A., & Mamontov, E. (2018). Glycerol Hydrogen-Bonding Network Dominates Structure and Collective Dynamics in a Deep Eutectic Solvent. Journal of Physical Chemistry B, 122(3), 1261–1267. doi:10.1021/acs.jpcb.7b11224.

Vanda, H., Dai, Y., Wilson, E. G., Verpoorte, R., & Choi, Y. H. (2018). Green solvents from ionic liquids and deep eutectic solvents to natural deep eutectic solvents. Comptes Rendus Chimie, 21(6), 628–638. doi:10.1016/j.crci.2018.04.002.

Atilhan, M., & Aparicio, S. (2021). Review and Perspectives for Effective Solutions to Grand Challenges of Energy and Fuels Technologies via Novel Deep Eutectic Solvents. Energy and Fuels, 35(8), 6402–6419. doi:10.1021/acs.energyfuels.1c00303.

Manurung, R., Hutauruk, G. R., & Arief, A. (2018). Vitamin E extraction from red palm biodiesel by using K2CO3 based deep eutectic solvent with glycerol as hydrogen bond donor. AIP Conference Proceedings. doi:10.1063/1.5042867.

Manurung, R., Arief, A., & Hutauruk, G. R. (2018). Purification of red palm biodiesel by using K2CO3 based deep eutectic solvent (DES) with glycerol as hydrogen bond donor (HBD). AIP Conference Proceedings. doi:10.1063/1.5042866.

Hayyan, A., Ali Hashim, M., Mjalli, F. S., Hayyan, M., & AlNashef, I. M. (2013). A novel phosphonium-based deep eutectic catalyst for biodiesel production from industrial low grade crude palm oil. Chemical Engineering Science, 92, 81–88. doi:10.1016/j.ces.2012.12.024.

Shahbaz, K., Baroutian, S., Mjalli, F. S., Hashim, M. A., & Alnashef, I. M. (2012). Densities of ammonium and phosphonium based deep eutectic solvents: Prediction using artificial intelligence and group contribution techniques. Thermochimica Acta, 527, 59–66. doi:10.1016/j.tca.2011.10.010.

Merza, F., Fawzy, A., AlNashef, I., Al-Zuhair, S., & Taher, H. (2018). Effectiveness of using deep eutectic solvents as an alternative to conventional solvents in enzymatic biodiesel production from waste oils. Energy Reports, 4, 77–83. doi:10.1016/j.egyr.2018.01.005.

Ajmal, M., Aiping, S., Awais, M., Ullah, M. S., Saeed, R., Uddin, S., Ahmad, I., Zhou, B., & Zihao, X. (2020). Optimization of pilot-scale in-vessel composting process for various agricultural wastes on elevated temperature by using Taguchi technique and compost quality assessment. Process Safety and Environmental Protection, 140, 34–45. doi:10.1016/j.psep.2020.05.001.

Rao, S., Samant, P., Kadampatta, A., & Shenoy, R. (2013). An Overview of Taguchi Method: Evolution, Concept and Interdisciplinary Applications. International Journal of Scientific & Engineering Research, 4(10), 621–626.

Dhawane, S. H., Karmakar, B., Ghosh, S., & Halder, G. (2018). Parametric optimisation of biodiesel synthesis from waste cooking oil via Taguchi approach. Journal of Environmental Chemical Engineering, 6(4), 3971–3980. doi:10.1016/j.jece.2018.05.053.

Shayestefar, M., Mashreghi, A., Hasani, S., & Taghi Rezvan, M. (2022). Optimization of the structural and magnetic properties of MnFe2O4 doped by Zn and Dy using Taguchi method. Journal of Magnetism and Magnetic Materials, 541, 168390. doi:10.1016/j.jmmm.2021.168390.

Zaman, P. B., Sultana, M. N., & Dhar, N. R. (2022). Multi-variant hybrid techniques coupled with Taguchi in multi-response parameter optimisation for better machinability of turning alloy steel. Advances in Materials and Processing Technologies, 8(3), 3127–3147. doi:10.1080/2374068X.2021.1945302.

Halder, S., Dhawane, S. H., Kumar, T., & Halder, G. (2015). Acid-catalyzed esterification of castor (Ricinus communis) oil: Optimization through a central composite design approach. Biofuels, 6(3–4), 191–201. doi:10.1080/17597269.2015.1078559.

Karmakar, B., Dhawane, S. H., & Halder, G. (2018). Optimization of biodiesel production from castor oil by Taguchi design. Journal of Environmental Chemical Engineering, 6(2), 2684–2695. doi:10.1016/j.jece.2018.04.019.

Karabas, H. (2013). Biodiesel production from crude acorn (Quercus frainetto L.) kernel oil: An optimisation process using the Taguchi method. Renewable Energy, 53, 384–388. doi:10.1016/j.renene.2012.12.002.

Saravanakumar, A., Avinash, A., & Saravanakumar, R. (2016). Optimization of biodiesel production from Pungamia oil by Taguchi’stechnique. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 38(17), 2524–2529. doi:10.1080/15567036.2015.1098746.

Kumar, N., Mohapatra, S. K., Ragit, S. S., Kundu, K., & Karmakar, R. (2017). Optimization of safflower oil transesterification using the Taguchi approach. Petroleum Science, 14(4), 798–805. doi:10.1007/s12182-017-0183-0.

Gadhave, S. L., & Ragit, S. S. (2020). Process optimization of Tung oil methyl ester (Vernicia fordii) using the Taguchi approach, and its fuel characterization. Biofuels, 11(1), 49–55. doi:10.1080/17597269.2017.1334441.

Yesilyurt, M. K., & Cesur, C. (2022). A statistical optimization attempt by applying the Taguchi technique for the optimum transesterification process parameters in the production of biodiesel from Papaver somniferum L. seed oil. Fuel, 329, 125406. doi:10.1016/j.fuel.2022.125406.

Dias, A. N., Cerqueira, M. B. R., Moura, R. R. De, Kurz, M. H. S., Clementin, R. M., D’Oca, M. G. M., & Primel, E. G. (2012). Optimization of a method for the simultaneous determination of glycerides, free and total glycerol in biodiesel ethyl esters from castor oil using gas chromatography. Fuel, 94, 178–183. doi:10.1016/j.fuel.2011.10.037.

Mbuya, B. I., Kime, M. B., & Tshimombo, A. M. D. (2017). Comparative Study of Approaches based on the Taguchi and ANOVA for Optimising the Leaching of Copper–Cobalt Flotation Tailings. Chemical Engineering Communications, 204(4), 512–521. doi:10.1080/00986445.2017.1278588.

King, B. M. (2010). Analysis of variance (3rd Ed.). International Encyclopedia of Education, Elsevier Science, Amsterdam, Netherlands.

El-Moslamy, S. H., Elkady, M. F., Rezk, A. H., & Abdel-Fattah, Y. R. (2017). Applying Taguchi design and large-scale strategy for mycosynthesis of nano-silver from endophytic Trichoderma harzianum SYA.F4 and its application against phytopathogens. Scientific Reports, 7(March), 1–22,. doi:10.1038/srep45297.

Yang, S., Wang, J., & Ma, Y. (2021). Online robust parameter design considering observable noise factors. Engineering Optimization, 53(6), 1024–1043. doi:10.1080/0305215X.2020.1770744.

Hendarto, E., & Setyaningrum, A. (2022). Production and King Grass Nutritional Quality Number of Sources of Nitrogen Fertilizer. HighTech and Innovation Journal, 3(3), 252-266. doi:10.28991/HIJ-2022-03-03-02.

Milić, J. K., Petrinić, I., Goršek, A., & Simonič, M. (2014). Ultrafiltration of oil-in-water emulsion by using ceramic membrane: Taguchi experimental design approach. Central European Journal of Chemistry, 12(2), 242–249. doi:10.2478/s11532-013-0373-6.

Obinna, A. C., Mbah, G. O., & Onoh, M. I. (2021). Optimization and process modeling of viscosity of oil based drilling muds. Journal of Human, Earth, and Future, 2(4), 412-423. doi:10.28991/HEF-2021-02-04-09.

Ali, Z., & Bhaskar, S. B. (2016). Basic statistical tools in research and data analysis. Indian Journal of Anaesthesia, 60(9), 662–669. doi:10.4103/0019-5049.190623.

Esmaeili, H., Yeganeh, G., & Esmaeilzadeh, F. (2019). Optimization of biodiesel production from Moringa oleifera seeds oil in the presence of nano-MgO using Taguchi method. International Nano Letters, 9(3), 257–263. doi:10.1007/s40089-019-0278-2.

Hinkelmann, K. (Ed.). (2012). Design and Analysis of Experiments. Wiley Series in Probability and Statistics, John Wiley & Sons, New York, United States. doi:10.1002/9781118147634.

Ur Rahman, W., Yahya, S. M., Khan, Z. A., Khan, N. A., Halder, G., & Dhawane, S. H. (2021). Valorization of waste chicken egg shells towards synthesis of heterogeneous catalyst for biodiesel production: Optimization and statistical analysis. Environmental Technology and Innovation, 22, 101460. doi:10.1016/j.eti.2021.101460.

Abdall, T. A., Koteng, D. O., Shitote, S. M., & Matallah, M. (2022). Mechanical Properties of Eco-friendly Concrete Made with Sugarcane Bagasse Ash. Civil Engineering Journal, 8(6), 1227-1239. doi:10.28991/CEJ-2022-08-06-010.

Helmi, M., Ghadiri, M., Tahvildari, K., & Hemmati, A. (2021). Biodiesel synthesis using clinoptilolite-Fe3O4-based phosphomolybdic acid as a novel magnetic green catalyst from salvia mirzayanii oil via electrolysis method: Optimization study by Taguchi method. Journal of Environmental Chemical Engineering, 9(5), 105988. doi:10.1016/j.jece.2021.105988.

Hsiao, M.-C., Kuo, J.-Y., Hsieh, S.-A., Hsieh, P.-H., & Hou, S.-S. (2020). Optimized conversion of waste cooking oil to biodiesel using modified calcium oxide as catalyst via a microwave heating system. Fuel, 266, 117114. doi:10.1016/j.fuel.2020.117114.

Devarajan, Y., Nalla, B. T., Dinesh Babu, M., Subbiah, G., Mishra, R., & Vellaiyan, S. (2021). Analysis on improving the conversion rate and waste reduction on bioconversion of Citrullus lanatus seed oil and its characterization. Sustainable Chemistry and Pharmacy, 22(April), 100497. doi:10.1016/j.scp.2021.100497.

Halwe, A. D., Deshmukh, S. J., Kanu, N. J., Gupta, E., & Tale, R. B. (2021). Optimization of the novel hydrodynamic cavitation based waste cooking oil biodiesel production process parameters using integrated L9Taguchi and RSM approach. Materials Today: Proceedings, 47, 5934–5941. doi:10.1016/j.matpr.2021.04.484.

Full Text: PDF

DOI: 10.28991/ESJ-2023-07-03-018


  • There are currently no refbacks.

Copyright (c) 2023 Susila Arita, Leily Nurul Komariah, Winny Andalia, Fitri Hadiah, Cindi Ramayanti