Characteristics and Antibacterial Properties of Film Membrane of Chitosan-Resveratrol for Wound Dressing

Basri A. Gani, Nur Asmah, Cut Soraya, Dharli Syafriza, Sri Rezeki, Muhammad Nazar, Subhaini Jakfar, Nurtami Soedarsono

Abstract


The research aimed to evaluate the film membrane of Nano Chitosan Resveratrol (NCHR) for biological, physicochemical, and antibacterial properties. Psychochemically, the functional groups of chitosan compounds were examined by FTIR, chemical compounds by GCMS, and the morphology of chitosan and chemical elements by SEM-EDS. Biologically, the characteristics of NCHR were examined by solubility, swelling, permeability, and biodegradation tests. Meanwhile, the antibacterial properties were examined for inhibition of Porphyromonas gingivalis (P. gingivalis) ATCC 33277 by Minimal inhibition concentration (MIC) and growth assessment by spectrophotometry. Nano Chitosan (NCH) has appeared at 1033.85 cm-1 as a sharp peak indicating the P=O group and contains anti-toxicity compounds (Ethane, 1,1-diethoxy- (CAS) 1,1-Diethoxye) is 81.06% and antioxidant compounds Limonene is (1.28%). In addition, NCH has chemical elements, Oxygen Weight (69.4%), calcium (19.7%), magnesium (6.6%), and phosphorus (4.3%). NaCl 0.9%, PBS, and Aquades. In addition, it has an excellent index of water vapor transmission rate (WVTR) in all solvents (R2³ 0.95). The NCHR membrane film is bacteriostatic (≤ 300 CFU/mL) with each value of Minimal Inhibition Concentration (MIC) >15 mm. The Nano chitosan contains antitoxic, antioxidant, and antibacterial compounds with high oxygen elements. The film membrane of nano chitosan resveratrol can maintain the stability of changes in pH with a very high solubility index, swelling index, and WVTR index, as well as good biodegradation and antibacterial properties.

 

Doi: 10.28991/ESJ-2023-07-03-012

Full Text: PDF


Keywords


Antibacterial; Biodegradation; Film-membrane; Nano chitosan; Resveratrol; Wound Dressing.

References


Baker, S. B., Xiang, W., & Atkinson, I. (2017). Internet of Things for Smart Healthcare: Technologies, Challenges, and Opportunities. IEEE Access, 5, 26521–26544. doi:10.1109/ACCESS.2017.2775180.

Atanasov, A. G., Zotchev, S. B., Dirsch, V. M., & Supuran, C. T. (2021). Natural products in drug discovery: advances and opportunities. Nature Reviews Drug Discovery, 20(3), 200–216. doi:10.1038/s41573-020-00114-z.

Jha, R., Singh, A., Sharma, P. K., & Fuloria, N. K. (2020). Smart carbon nanotubes for drug delivery system: A comprehensive study. Journal of Drug Delivery Science and Technology, 58, 101811. doi:10.1016/j.jddst.2020.101811.

Yandri, Y., Ropingi, H., Suhartati, T., Hendri, J., Irawan, B., & Hadi, S. (2022). The Effect of Zeolite/Chitosan Hybrid Matrix for Thermal-stabilization Enhancement on the Immobilization of Aspergillus fumigatus α-Amylase. Emerging Science Journal, 6(3), 505–518. doi:10.28991/ESJ-2022-06-03-06.

Khan, M. I. H., An, X., Dai, L., Li, H., Khan, A., & Ni, Y. (2018). Chitosan-based Polymer Matrix for Pharmaceutical Excipients and Drug Delivery. Current Medicinal Chemistry, 26(14), 2502–2513. doi:10.2174/0929867325666180927100817.

Kumar, R., & Sharma, M. (2018). Herbal nanomedicine interactions to enhance pharmacokinetics, pharmacodynamics, and therapeutic index for better bioavailability and biocompatibility of herbal formulations. Journal of Materials NanoScience, 5(1), 35-60.

Arévalo-Híjar, L., Aguilar-Luis, M. Á., Caballero-García, S., Gonzáles-Soto, N., & Del Valle-Mendoza, J. (2018). Antibacterial and cytotoxic effects of Moringa oleifera (Moringa) and Azadirachta indica (Neem) methanolic extracts against strains of Enterococcus faecalis. International Journal of Dentistry, 2018. doi:10.1155/2018/1071676.

Lorevice, M. V., Otoni, C. G., de Moura, M. R., & Mattoso, L. H. C. (2016). Chitosan nanoparticles on the improvement of thermal, barrier, and mechanical properties of high- and low-methyl pectin films. Food Hydrocolloids, 52, 732–740. doi:10.1016/j.foodhyd.2015.08.003.

Tongdeesoontorn, W., Mauer, L. J., Wongruong, S., Sriburi, P., & Rachtanapun, P. (2011). Effect of carboxymethyl cellulose concentration on physical properties of biodegradable cassava starch-based films. Chemistry Central Journal, 5(1), 6. doi:10.1186/1752-153X-5-6.

Prasathkumar, M., & Sadhasivam, S. (2021). Chitosan/Hyaluronic acid/Alginate and an assorted polymers loaded with honey, plant, and marine compounds for progressive wound healing—Know-how. International Journal of Biological Macromolecules, 186, 656–685. doi:10.1016/j.ijbiomac.2021.07.067.

Comino-Sanz, I. M., López-Franco, M. D., Castro, B., & Pancorbo-Hidalgo, P. L. (2021). The role of antioxidants on wound healing: A review of the current evidence. Journal of Clinical Medicine, 10(16), 3558. doi:10.3390/jcm10163558.

Jacob, S., Nair, A. B., Boddu, S. H. S., Gorain, B., Sreeharsha, N., & Shah, J. (2021). An updated overview of the emerging role of patch and film-based buccal delivery systems. Pharmaceutics, 13(8). doi:10.3390/pharmaceutics13081206.

Shehabeldine, A. M., Salem, S. S., Ali, O. M., Abd-Elsalam, K. A., Elkady, F. M., & Hashem, A. H. (2022). Multifunctional Silver Nanoparticles Based on Chitosan: Antibacterial, Antibiofilm, Antifungal, Antioxidant, and Wound-Healing Activities. Journal of Fungi, 8(6), 612. doi:10.3390/jof8060612.

Xiong Chang, X., Mujawar Mubarak, N., Ali Mazari, S., Sattar Jatoi, A., Ahmad, A., Khalid, M., Walvekar, R., Abdullah, E. C., Karri, R. R., Siddiqui, M. T. H., & Nizamuddin, S. (2021). A review on the properties and applications of chitosan, cellulose and deep eutectic solvent in green chemistry. Journal of Industrial and Engineering Chemistry, 104, 362–380. doi:10.1016/j.jiec.2021.08.033.

Ndhlala, A., Mulaudzi, R., Ncube, B., Abdelgadir, H., du Plooy, C., & Van Staden, J. (2014). Antioxidant, Antimicrobial and Phytochemical Variations in Thirteen Moringa oleifera Lam. Cultivars. Molecules, 19(7), 10480–10494. doi:10.3390/molecules190710480.

Ervolino, E., Statkievicz, C., Toro, L. F., de Mello-Neto, J. M., Cavazana, T. P., Issa, J. P. M., Dornelles, R. C. M., de Almeida, J. M., Nagata, M. J. H., Okamoto, R., Casatti, C. A., Garcia, V. G., & Theodoro, L. H. (2019). Antimicrobial photodynamic therapy improves the alveolar repair process and prevents the occurrence of osteonecrosis of the jaws after tooth extraction in senile rats treated with zoledronate. Bone, 120, 101–113. doi:10.1016/j.bone.2018.10.014.

Soraya, C., M. Alibasyah, Z., Nazar, M., & A. Gani, B. (2022). Chemical Constituents of Moringa oleifera Leaves of Ethanol Extract and its Cytotoxicity against Enterococcus faecalis of Root Canal Isolate. Research Journal of Pharmacy and Technology, 3523–3530. doi:10.52711/0974-360x.2022.00591.

Hasan, M., Rusman, R., Khaldun, I., Ardana, L., Mudatsir, M., & Fansuri, H. (2020). Active edible sugar palm starch-chitosan films carrying extra virgin olive oil: Barrier, thermo-mechanical, antioxidant, and antimicrobial properties. International Journal of Biological Macromolecules, 163, 766–775. doi:10.1016/j.ijbiomac.2020.07.076.

de Queiroz Antonino, R., Lia Fook, B., de Oliveira Lima, V., de Farias Rached, R., Lima, E., da Silva Lima, R., Peniche Covas, C., & Lia Fook, M. (2017). Preparation and Characterization of Chitosan Obtained from Shells of Shrimp (Litopenaeus vannamei Boone). Marine Drugs, 15(5), 141. doi:10.3390/md15050141.

Soraya, C., Alibasyah, Z. M., & Gani, B. A. (2022). Biomass index and viscosity values of Moringa oleifera that influenced by Enterococcus faecalis. Journal of Syiah Kuala Dentistry Society, 6(1), 1–5. doi:10.24815/jds.v6i1.21885.

Yusuf, H., Husna, F., & Gani, B. A. (2021). The chemical composition of the ethanolic extract from Chromolaena odorata leaves correlates with the cytotoxicity exhibited against colorectal and breast cancer cell lines. Journal of Pharmacy & Pharmacognosy Research, 9(3), 344–356. doi:10.56499/jppres20.969_9.3.344.

Rouhani, A., Ghoddusi, J., Naghavi, N., & Al-Lawati, G. (2013). Scanning electron microscopic evaluation of dentinal tubule penetration of Epiphany in severely curved root canals. European Journal of Dentistry, 7(4), 423–428. doi:10.4103/1305-7456.120673.

Alvarez-Ordóñez, A., Mouwen, D. J. M., López, M., & Prieto, M. (2011). Fourier transform infrared spectroscopy as a tool to characterize molecular composition and stress response in foodborne pathogenic bacteria. Journal of Microbiological Methods, 84(3), 369–378. doi:10.1016/j.mimet.2011.01.009.

Sutton, S. (2011). Measurement of microbial cells by optical density. Journal of Validation technology, 17(1), 46-49.

Syafriza, D., Sutadi, H., Primasari, A., & Siregar, Y. (2020). Spectrophotometric analysis of streptococcus mutans growth and biofilm formation in Saliva and histatin-5 relate to pH and viscosity. Brazilian Research in Pediatric Dentistry and Integrated Clinic, 21, 1–11. doi:10.1590/pboci.2021.004.

Rosyada, A., Sunarharum, W. B., & Waziiroh, E. (2019). Characterization of chitosan nanoparticles as an edible coating material. IOP Conference Series: Earth and Environmental Science, 230, 012043. doi:10.1088/1755-1315/230/1/012043.

Jia-hui, Y., Yu-min, D., & Hua, Z. (1999). Blend films of chitosan-gelatin. Wuhan University Journal of Natural Sciences, 4(4), 476–476. doi:10.1007/bf02832288.

Silverstein, R., Webster, F., & Kiemle, D., (2005). Proton NMR spectrometry. Spectrometric Identification of Organic Compounds, 7th ed.; John Wiley & Sons, New York, United States.

Sorrentino, A., Gorrasi, G., & Vittoria, V. (2007). Potential perspectives of bio-nanocomposites for food packaging applications. Trends in Food Science and Technology, 18(2), 84–95. doi:10.1016/j.tifs.2006.09.004.

Gouda, M., Elayaan, U., & Youssef, M. M. (2014). Synthesis and Biological Activity of Drug Delivery System Based on Chitosan Nanocapsules. Advances in Nanoparticles, 03(04), 148–158. doi:10.4236/anp.2014.34019.

Ayele, T. T., Regasa, M. B., & Delesa, D. A. (2016). Evaluation of Antimicrobial Activity of Some Traditional Medicinal Plants and Herbs from Nekemte District against Wound Causing Bacterial Pathogens. Science, Technology and Arts Research Journal, 4(2), 199. doi:10.4314/star.v4i2.24.

Turcant, A., Deguigne, M., Ferec, S., Bruneau, C., Leborgne, I., Lelievre, B., Gegu, C., Jegou, F., Abbara, C., Le Roux, G., & Boels, D. (2017). A 6-year review of new psychoactive substances at the Centre antipoison Grand-Ouest d’Angers: Clinical and biological data. Toxicologie Analytique et Clinique, 29(1), 18–33. doi:10.1016/j.toxac.2016.12.001.

Singh, P., Shukla, R., Prakash, B., Kumar, A., Singh, S., Mishra, P. K., & Dubey, N. K. (2010). Chemical profile, antifungal, antiaflatoxigenic and antioxidant activity of Citrus maxima Burm. and Citrus sinensis (L.) Osbeck essential oils and their cyclic monoterpene, DL-limonene. Food and Chemical Toxicology, 48(6), 1734–1740. doi:10.1016/j.fct.2010.04.001.

D’Alessio, P. A., Ostan, R., Bisson, J. F., Schulzke, J. D., Ursini, M. V., & Béné, M. C. (2013). Oral administration of d-Limonene controls inflammation in rat colitis and displays anti-inflammatory properties as diet supplementation in humans. Life Sciences, 92(24–26), 1151–1156. doi:10.1016/j.lfs.2013.04.013.

d’Alessio, P., Mirshahi, M., Bisson, J.-F., & Bene, M. (2014). Skin Repair Properties of d-Limonene and Perillyl Alcohol in Murine Models. Anti-Inflammatory & Anti-Allergy Agents in Medicinal Chemistry, 13(1), 29–35. doi:10.2174/18715230113126660021.

Liu, H., Wang, C., Li, C., Qin, Y., Wang, Z., Yang, F., Li, Z., & Wang, J. (2018). A functional chitosan-based hydrogel as a wound dressing and drug delivery system in the treatment of wound healing. RSC Advances, 8(14), 7533–7549. doi:10.1039/c7ra13510f.

Yap, K. M., Sekar, M., Seow, L. J., Gan, S. H., Bonam, S. R., Mat Rani, N. N. I., Lum, P. T., Subramaniyan, V., Wu, Y. S., Fuloria, N. K., & Fuloria, S. (2021). Mangifera indica (Mango): A Promising Medicinal Plant for Breast Cancer Therapy and Understanding Its Potential Mechanisms of Action. Breast Cancer: Targets and Therapy, Volume 13, 471–503. doi:10.2147/bctt.s316667.

Alemdaroǧlu, C., Deǧim, Z., Çelebi, N., Zor, F., Öztürk, S., & Erdoǧan, D. (2006). An investigation on burn wound healing in rats with chitosan gel formulation containing epidermal growth factor. Burns, 32(3), 319–327. doi:10.1016/j.burns.2005.10.015.

Buosi, F. S., Alaimo, A., Di Santo, M. C., Elías, F., García Liñares, G., Acebedo, S. L., Castañeda Cataña, M. A., Spagnuolo, C. C., Lizarraga, L., Martínez, K. D., & Pérez, O. E. (2020). Resveratrol encapsulation in high molecular weight chitosan-based nanogels for applications in ocular treatments: Impact on human ARPE-19 culture cells. International Journal of Biological Macromolecules, 165, 804–821. doi:10.1016/j.ijbiomac.2020.09.234.

Stricker-Krongrad, A. H., Alikhassy, Z., Matsangos, N., Sebastian, R., Marti, G., Lay, F., & Harmon, J. W. (2018). Efficacy of chitosan-based dressing for control of bleeding in excisional wounds. Eplasty, 18, 122-130.

Singh, R., Shitiz, K., & Singh, A. (2017). Chitin and chitosan: biopolymers for wound management. International Wound Journal, 14(6), 1276–1289. doi:10.1111/iwj.12797.

Ferreira, P. G., Ferreira, V. F., da Silva, F. de C., Freitas, C. S., Pereira, P. R., & Paschoalin, V. M. F. (2022). Chitosans and Nanochitosans: Recent Advances in Skin Protection, Regeneration, and Repair. Pharmaceutics, 14(6), 1307. doi:10.3390/pharmaceutics14061307.

Alharbi, A.M., Alharbi, T.M., Alqahtani, M.S., Elfasakhany, F.M., Afifi, I.K., Rajeh, M. T., ... & Kenawi, L.M.M. (2023). A Comparative Evaluation of Antibacterial Efficacy of Moringa oleifera Leaf Extract, Octenidine Dihydrochloride, and Sodium Hypochlorite as Intracanal Irrigants against Enterococcus faecalis: An In Vitro Study. International Journal of Dentistry, 7690497.

Kou, X., Li, B., Olayanju, J. B., Drake, J. M., & Chen, N. (2018). Nutraceutical or pharmacological potential of Moringa oleifera Lam. Nutrients, 10(3), 343. doi:10.3390/nu10030343.

Predoi, D., Ciobanu, C. S., Iconaru, S. L., Raaen, S., Badea, M. L., & Rokosz, K. (2022). Physicochemical and Biological Evaluation of Chitosan-Coated Magnesium-Doped Hydroxyapatite Composite Layers Obtained by Vacuum Deposition. Coatings, 12(5), 702. doi:10.3390/coatings12050702.

Zhang, Y., Chan, H. F., & Leong, K. W. (2013). Advanced materials and processing for drug delivery: The past and the future. Advanced Drug Delivery Reviews, 65(1), 104–120. doi:10.1016/j.addr.2012.10.003.

Herb, M., & Schramm, M. (2021). Functions of ROS in macrophages and antimicrobial immunity. Antioxidants, 10(2), 1–39. doi:10.3390/antiox10020313.

Flora, S. J. S., & Pachauri, V. (2010). Chelation in metal intoxication. International Journal of Environmental Research and Public Health, 7(7), 2745–2788. doi:10.3390/ijerph7072745.

Islam, M. M., Shahruzzaman, M., Biswas, S., Nurus Sakib, M., & Rashid, T. U. (2020). Chitosan based bioactive materials in tissue engineering applications-A review. Bioactive Materials, 5(1), 164–183. doi:10.1016/j.bioactmat.2020.01.012.

Xu, J., Wise, J. T. F., Wang, L., Schumann, K., Zhang, Z., & Shi, X. (2017). Dual roles of oxidative stress in metal carcinogenesis. Journal of Environmental Pathology, Toxicology and Oncology, 36(4), 345–376. doi:10.1615/JEnvironPatholToxicolOncol.2017025229.

Subramaniam, T., Fauzi, M. B., Lokanathan, Y., & Law, J. X. (2021). The role of calcium in wound healing. International Journal of Molecular Sciences, 22(12), 6486. doi:10.3390/ijms22126486.

Navarro-Requena, C., Pérez-Amodio, S., Castano, O., & Engel, E. (2018). Wound healing-promoting effects stimulated by extracellular calcium and calcium-releasing nanoparticles on dermal fibroblasts. Nanotechnology, 29(39), 395102. doi:10.1088/1361-6528/aad01f.

Lansdown, A. B. G. (2002). Calcium: A potential central regulator in wound healing in the skin. Wound Repair and Regeneration, 10(5), 271–285. doi:10.1046/j.1524-475X.2002.10502.x.

Özsu, N., & Monteiro, A. (2017). Wound healing, calcium signaling, and other novel pathways are associated with the formation of butterfly eyespots. BMC Genomics, 18(1), 1–14. doi:10.1186/s12864-017-4175-7.

Kawai, K., Larson, B. J., Ishise, H., Carre, A. L., Nishimoto, S., Longaker, M., & Lorenz, H. P. (2011). Calcium-based nanoparticles accelerate skin wound healing. PLoS One, 6(11), 27106. doi:10.1371/journal.pone.0027106.

Kim, D. H., Lee, J. Y., Kim, Y. J., Kim, H. J., & Park, W. (2020). Rubi fructus water extract alleviates lps-stimulated macrophage activation via an ER stress-induced calcium/chop signaling pathway. Nutrients, 12(11), 3577. doi:10.3390/nu12113577.

Klein, G. L. (2018). The role of calcium in inflammation-associated bone resorption. Biomolecules, 8(3), 69. doi:10.3390/biom8030069.

Younis, I. (2020). Role of oxygen in wound healing. Journal of Wound Care, 29(Sup5b), S4–S10. doi:10.12968/jowc.2020.29.Sup5b.S4.

Guo, S., & DiPietro, L. A. (2010). Critical review in oral biology & medicine: Factors affecting wound healing. Journal of Dental Research, 89(3), 219–229. doi:10.1177/0022034509359125.

Liu, M., Wang, X., Li, H., Xia, C., Liu, Z., Liu, J., Yin, A., Lou, X., Wang, H., Mo, X., & Wu, J. (2021). Magnesium oxide-incorporated electrospun membranes inhibit bacterial infections and promote the healing process of infected wounds. Journal of Materials Chemistry B, 9(17), 3727–3744. doi:10.1039/d1tb00217a.

Politis, C., Schoenaers, J., Jacobs, R., & Agbaje, J. O. (2016). Wound Healing Problems in the Mouth. Frontiers in Physiology, 7. doi:10.3389/fphys.2016.00507.

Peacock, M. (2021). Phosphate Metabolism in Health and Disease. Calcified Tissue International, 108(1), 3–15. doi:10.1007/s00223-020-00686-3.

Król, A., Mizerna, K., & Bożym, M. (2020). An assessment of pH-dependent release and mobility of heavy metals from metallurgical slag. Journal of Hazardous Materials, 384, 121502. doi:10.1016/j.jhazmat.2019.121502.

Mghaiouini, R., Abdelhadi, M., Hairch, Y., Saifaoui, D., Salah, M., Abderrahmane, E., Chahid, E. G., Bensemlali, M., Belhora, F., El Mouden, M., Monkade, M., & El Bouari, A. (2022). The effect of low frequency of electromagnetic field on the freezing and cooling process of water. Materials Today: Proceedings, 66, 85–94. doi:10.1016/j.matpr.2022.03.455.

Nunthanid, J., Puttipipatkhachorn, S., Yamamoto, K., & Peck, G. E. (2001). Physical properties and molecular behavior of chitosan films. Drug Development and Industrial Pharmacy, 27(2), 143–157. doi:10.1081/DDC-100000481.

Sirkka, T., Skiba, J. B., & Apell, S. P. (2016). Wound pH depends on actual wound size. arXiv preprint arXiv:1601.06365. doi:10.1111/j.1365-2621.2006.tb15624.x.

Boron, W. F. (2004). Regulation of intracellular pH. American Journal of Physiology - Advances in Physiology Education, 28(4), 160–179. doi:10.1152/advan.00045.2004.

Sirkka, T., Skiba, J., & Apell, S., (2016). Wound pH depends on actual wound size. arXiv preprint arXiv:1601.06365. doi:10.48550/arXiv.1601.06365.

Harguindey, S., Orive, G., Luis Pedraz, J., Paradiso, A., & Reshkin, S. J. (2005). The role of pH dynamics and the Na+/H+ antiporter in the etiopathogenesis and treatment of cancer. Two faces of the same coin—one single nature. Biochimica et Biophysica Acta (BBA) - Reviews on Cancer, 1756(1), 1–24. doi:10.1016/j.bbcan.2005.06.004.

Li, Z., Zhao, Y., Liu, H., Ren, M., Wang, Z., Wang, X., Liu, H., Feng, Y., Lin, Q., Wang, C., & Wang, J. (2021). pH-responsive hydrogel loaded with insulin as a bioactive dressing for enhancing diabetic wound healing. Materials & Design, 210, 110104. doi:10.1016/j.matdes.2021.110104.

Nagoba, B. S., Suryawanshi, N. M., Wadher, B., & Selkar, S. (2015). Acidic environment and wound healing: a review. Wounds-a Compendium of Clinical Research and Practice, 27(1), 5-11.

Kant, V., Jangir, B. L., & Kumar, V. (2020). Gross and histopathological effects of dimethyl sulfoxide on wound healing in rats. Wound Medicine, 30, 100194. doi:10.1016/j.wndm.2020.100194.

Hebling, J., Bianchi, L., Basso, F. G., Scheffel, D. L., Soares, D. G., Carrilho, M. R. O., Pashley, D. H., Tjäderhane, L., & De Souza Costa, C. A. (2015). Cytotoxicity of dimethyl sulfoxide (DMSO) in direct contact with odontoblast-like cells. Dental Materials, 31(4), 399–405. doi:10.1016/j.dental.2015.01.007.

Koland, M., Vijayanarayana, K., Charyulu, Rn., & Prabhu, P. (2011). In vitro and in vivo evaluation of chitosan buccal films of ondansetron hydrochloride. International Journal of Pharmaceutical Investigation, 1(3), 164. doi:10.4103/2230-973x.85967.

Zhao, X., Wu, H., Guo, B., Dong, R., Qiu, Y., & Ma, P. X. (2017). Antibacterial anti-oxidant electroactive injectable hydrogel as self-healing wound dressing with hemostasis and adhesiveness for cutaneous wound healing. Biomaterials, 122, 34–47. doi:10.1016/j.biomaterials.2017.01.011.

Mikušová, V., & Mikuš, P. (2021). Advances in chitosan-based nanoparticles for drug delivery. International Journal of Molecular Sciences, 22(17). doi:10.3390/ijms22179652.

Daza, L. D., Eim, V. S., & Váquiro, H. A. (2021). Influence of ulluco starch concentration on the physicochemical properties of starch–chitosan biocomposite films. Polymers, 13(23), 4232. doi:10.3390/polym13234232.

Spinks, G. M., Lee, C. K., Wallace, G. G., Kim, S. I., & Kim, S. J. (2006). Swelling behavior of chitosan hydrogels in ionic liquid-water binary systems. Langmuir, 22(22), 9375–9379. doi:10.1021/la061586r.

Ostrowska-Czubenko, J., Gierszewska, M., & Pieróg, M. (2015). pH-responsive hydrogel membranes based on modified chitosan: water transport and kinetics of swelling. Journal of Polymer Research, 22(8). doi:10.1007/s10965-015-0786-3.

Kayserilioǧlu, B. Ş., Bakir, U., Yilmaz, L., & Akkaş, N. (2003). Use of xylan, an agricultural by-product, in wheat gluten based biodegradable films: Mechanical, solubility and water vapor transfer rate properties. Bioresource Technology, 87(3), 239–246. doi:10.1016/S0960-8524(02)00258-4.

Cao, Z., Luo, X., Zhang, H., Fu, Z., Shen, Z., Cai, N., Xue, Y., & Yu, F. (2016). A facile and green strategy for the preparation of porous chitosan-coated cellulose composite membranes for potential applications as wound dressing. Cellulose, 23(2), 1349–1361. doi:10.1007/s10570-016-0860-y.

Zhang, Z. H., Han, Z., Zeng, X. A., Xiong, X. Y., & Liu, Y. J. (2015). Enhancing mechanical properties of chitosan films via modification with vanillin. International Journal of Biological Macromolecules, 81, 638–643. doi:10.1016/j.ijbiomac.2015.08.042.

Pinto, E. P., Tavares, W. D. S., Matos, R. S., Ferreira, A. M., Menezes, R. P., Da Costa, M. E. H. M., De Souza, T. M., Ferreira, I. M., De Sousa, F. F. O., & Zamora, R. R. M. (2018). Influence of low and high glycerol concentrations on wettability and flexibility of chitosan biofilms. Quimica Nova, 41(10), 1109–1116. doi:10.21577/0100-4042.20170287.

Rachtanapun, P., Klunklin, W., Jantrawut, P., Jantanasakulwong, K., Phimolsiripol, Y., Seesuriyachan, P., Leksawasdi, N., Chaiyaso, T., Ruksiriwanich, W., Phongthai, S., Sommano, S. R., Punyodom, W., Reungsang, A., & Ngo, T. M. P. (2021). Characterization of chitosan film incorporated with curcumin extract. Polymers, 13(6). doi:10.3390/polym13060963.

Malm, M., Liceaga, A. M., San Martin-Gonzalez, F., Jones, O. G., Garcia-Bravo, J. M., & Kaplan, I. (2021). Development of Chitosan Films from Edible Crickets and Their Performance as a Bio-Based Food Packaging Material. Polysaccharides, 2(4), 744–758. doi:10.3390/polysaccharides2040045.

Zhang, Z., & Angst, U. (2020). A Dual-Permeability Approach to Study Anomalous Moisture Transport Properties of Cement-Based Materials. Transport in Porous Media, 135(1), 59–78. doi:10.1007/s11242-020-01469-y.

Dai, Z., Ansaloni, L., Ryan, J. J., Spontak, R. J., & Deng, L. (2018). Nafion/IL hybrid membranes with tuned nanostructure for enhanced CO2 separation: Effects of ionic liquid and water vapor. Green Chemistry, 20(6), 1391–1404. doi:10.1039/c7gc03727a.

Palivan, C. G., Goers, R., Najer, A., Zhang, X., Car, A., & Meier, W. (2016). Bioinspired polymer vesicles and membranes for biological and medical applications. Chemical Society Reviews, 45(2), 377–411. doi:10.1039/c5cs00569h.

Liu, Y., Cai, Z., Sheng, L., Ma, M., Xu, Q., & Jin, Y. (2019). Structure-property of crosslinked chitosan/silica composite films modified by genipin and glutaraldehyde under alkaline conditions. Carbohydrate Polymers, 215, 348–357. doi:10.1016/j.carbpol.2019.04.001.

Jakfar, S., Lin, T. C., Chen, Z. Y., Yang, I. H., Gani, B. A., Ningsih, D. S., Kusuma, H., Chang, C. T., & Lin, F. H. (2022). A Polysaccharide Isolated from the Herb Bletilla striata Combined with Methylcellulose to Form a Hydrogel via Self-Assembly as a Wound Dressing. International Journal of Molecular Sciences, 23(19), 12019. doi:10.3390/ijms231912019.

Wang, Y., Cheng, G., Wu, W., Qiao, Q., Li, Y., & Li, X. (2015). Effect of pH and chloride on the micro-mechanism of pitting corrosion for high strength pipeline steel in aerated NaCl solutions. Applied Surface Science, 349, 746–756. doi:10.1016/j.apsusc.2015.05.053.

Tong, X., Sheng, G., Yang, D., Li, S., Lin, C. W., Zhang, W., Chen, Z., Wei, C., Yang, X., Shen, F., Shao, Y., Wei, H., Zhu, Y., Sun, J., Kaner, R. B., & Shao, Y. (2022). Crystalline tetra-aniline with chloride interactions towards a biocompatible supercapacitor. Materials Horizons, 9(1), 383–392. doi:10.1039/d1mh01081f.

Reichardt, A. (2014). Tissue engineering of human heart valves: prerequisites for a reproducible fabrication process. PhD Thesis, Technische Universität Berlin, Berlin, Germany.

Simi, C. K., & Abraham, T. E. (2010). Biodegradable biocompatible xyloglucan films for various applications. Colloid and Polymer Science, 288(3), 297–306. doi:10.1007/s00396-009-2151-8.

Zhang, L., Zhang, Z., Chen, Y., Ma, X., & Xia, M. (2021). Chitosan and procyanidin composite films with high antioxidant activity and pH responsivity for cheese packaging. Food Chemistry, 338, 128013. doi:10.1016/j.foodchem.2020.128013.

Pragati, S., Ashok, S., & Kuldeep, S. (2009). Recent advances in periodontal drug delivery systems. International Journal of Drug Delivery, 1(1), 1–14. doi:10.5138/ijdd.2009.0975.0215.01001.

Venkataramani, S., Truntzer, J., & Coleman, D. R. (2013). Thermal stability of high concentration lysozyme across varying pH: A Fourier Transform Infrared study. Journal of Pharmacy and Bioallied Sciences, 5(2), 148–153. doi:10.4103/0975-7406.111821.

Bhargav, H. S., Shastri, S. D., Poornav, S. P., Darshan, K. M., & Nayak, M. M. (2016). Measurement of the Zone of Inhibition of an Antibiotic. 2016 IEEE 6th International Conference on Advanced Computing (IACC). doi:10.1109/iacc.2016.82.

Dai, T., Tanaka, M., Huang, Y. Y., & Hamblin, M. R. (2011). Chitosan preparations for wounds and burns: Antimicrobial and wound-healing effects. Expert Review of Anti-Infective Therapy, 9(7), 857–879. doi:10.1586/eri.11.59.

Khattak, R. Z., Nawaz, A., Alnuwaiser, M. A., Latif, M. S., Rashid, S. A., Khan, A. A., & Alamoudi, S. A. (2022). Formulation, In Vitro Characterization and Antibacterial Activity of Chitosan-Decorated Cream Containing Bacitracin for Topical Delivery. Antibiotics, 11(9). doi:10.3390/antibiotics11091151.

Yan, D., Li, Y., Liu, Y., Li, N., Zhang, X., & Yan, C. (2021). Antimicrobial properties of chitosan and chitosan derivatives in the treatment of enteric infections. Molecules, 26(23). doi:10.3390/molecules26237136.

Alven, S., & Aderibigbe, B. A. (2020). Chitosan and cellulose-based hydrogels for wound management. International Journal of Molecular Sciences, 21(24), 1–30. doi:10.3390/ijms21249656.

Yilmaz Atay, H. (2019). Antibacterial Activity of Chitosan-Based Systems. Functional Chitosan. Springer, Singapore. doi:10.1007/978-981-15-0263-7_15.


Full Text: PDF

DOI: 10.28991/ESJ-2023-07-03-012

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Basri A. Gani