Characteristics and Antibacterial Properties of Film Membrane of Chitosan-Resveratrol for Wound Dressing
Abstract
Doi: 10.28991/ESJ-2023-07-03-012
Full Text: PDF
Keywords
References
Baker, S. B., Xiang, W., & Atkinson, I. (2017). Internet of Things for Smart Healthcare: Technologies, Challenges, and Opportunities. IEEE Access, 5, 26521–26544. doi:10.1109/ACCESS.2017.2775180.
Atanasov, A. G., Zotchev, S. B., Dirsch, V. M., & Supuran, C. T. (2021). Natural products in drug discovery: advances and opportunities. Nature Reviews Drug Discovery, 20(3), 200–216. doi:10.1038/s41573-020-00114-z.
Jha, R., Singh, A., Sharma, P. K., & Fuloria, N. K. (2020). Smart carbon nanotubes for drug delivery system: A comprehensive study. Journal of Drug Delivery Science and Technology, 58, 101811. doi:10.1016/j.jddst.2020.101811.
Yandri, Y., Ropingi, H., Suhartati, T., Hendri, J., Irawan, B., & Hadi, S. (2022). The Effect of Zeolite/Chitosan Hybrid Matrix for Thermal-stabilization Enhancement on the Immobilization of Aspergillus fumigatus α-Amylase. Emerging Science Journal, 6(3), 505–518. doi:10.28991/ESJ-2022-06-03-06.
Khan, M. I. H., An, X., Dai, L., Li, H., Khan, A., & Ni, Y. (2018). Chitosan-based Polymer Matrix for Pharmaceutical Excipients and Drug Delivery. Current Medicinal Chemistry, 26(14), 2502–2513. doi:10.2174/0929867325666180927100817.
Kumar, R., & Sharma, M. (2018). Herbal nanomedicine interactions to enhance pharmacokinetics, pharmacodynamics, and therapeutic index for better bioavailability and biocompatibility of herbal formulations. Journal of Materials NanoScience, 5(1), 35-60.
Arévalo-Híjar, L., Aguilar-Luis, M. Á., Caballero-García, S., Gonzáles-Soto, N., & Del Valle-Mendoza, J. (2018). Antibacterial and cytotoxic effects of Moringa oleifera (Moringa) and Azadirachta indica (Neem) methanolic extracts against strains of Enterococcus faecalis. International Journal of Dentistry, 2018. doi:10.1155/2018/1071676.
Lorevice, M. V., Otoni, C. G., de Moura, M. R., & Mattoso, L. H. C. (2016). Chitosan nanoparticles on the improvement of thermal, barrier, and mechanical properties of high- and low-methyl pectin films. Food Hydrocolloids, 52, 732–740. doi:10.1016/j.foodhyd.2015.08.003.
Tongdeesoontorn, W., Mauer, L. J., Wongruong, S., Sriburi, P., & Rachtanapun, P. (2011). Effect of carboxymethyl cellulose concentration on physical properties of biodegradable cassava starch-based films. Chemistry Central Journal, 5(1), 6. doi:10.1186/1752-153X-5-6.
Prasathkumar, M., & Sadhasivam, S. (2021). Chitosan/Hyaluronic acid/Alginate and an assorted polymers loaded with honey, plant, and marine compounds for progressive wound healing—Know-how. International Journal of Biological Macromolecules, 186, 656–685. doi:10.1016/j.ijbiomac.2021.07.067.
Comino-Sanz, I. M., López-Franco, M. D., Castro, B., & Pancorbo-Hidalgo, P. L. (2021). The role of antioxidants on wound healing: A review of the current evidence. Journal of Clinical Medicine, 10(16), 3558. doi:10.3390/jcm10163558.
Jacob, S., Nair, A. B., Boddu, S. H. S., Gorain, B., Sreeharsha, N., & Shah, J. (2021). An updated overview of the emerging role of patch and film-based buccal delivery systems. Pharmaceutics, 13(8). doi:10.3390/pharmaceutics13081206.
Shehabeldine, A. M., Salem, S. S., Ali, O. M., Abd-Elsalam, K. A., Elkady, F. M., & Hashem, A. H. (2022). Multifunctional Silver Nanoparticles Based on Chitosan: Antibacterial, Antibiofilm, Antifungal, Antioxidant, and Wound-Healing Activities. Journal of Fungi, 8(6), 612. doi:10.3390/jof8060612.
Xiong Chang, X., Mujawar Mubarak, N., Ali Mazari, S., Sattar Jatoi, A., Ahmad, A., Khalid, M., Walvekar, R., Abdullah, E. C., Karri, R. R., Siddiqui, M. T. H., & Nizamuddin, S. (2021). A review on the properties and applications of chitosan, cellulose and deep eutectic solvent in green chemistry. Journal of Industrial and Engineering Chemistry, 104, 362–380. doi:10.1016/j.jiec.2021.08.033.
Ndhlala, A., Mulaudzi, R., Ncube, B., Abdelgadir, H., du Plooy, C., & Van Staden, J. (2014). Antioxidant, Antimicrobial and Phytochemical Variations in Thirteen Moringa oleifera Lam. Cultivars. Molecules, 19(7), 10480–10494. doi:10.3390/molecules190710480.
Ervolino, E., Statkievicz, C., Toro, L. F., de Mello-Neto, J. M., Cavazana, T. P., Issa, J. P. M., Dornelles, R. C. M., de Almeida, J. M., Nagata, M. J. H., Okamoto, R., Casatti, C. A., Garcia, V. G., & Theodoro, L. H. (2019). Antimicrobial photodynamic therapy improves the alveolar repair process and prevents the occurrence of osteonecrosis of the jaws after tooth extraction in senile rats treated with zoledronate. Bone, 120, 101–113. doi:10.1016/j.bone.2018.10.014.
Soraya, C., M. Alibasyah, Z., Nazar, M., & A. Gani, B. (2022). Chemical Constituents of Moringa oleifera Leaves of Ethanol Extract and its Cytotoxicity against Enterococcus faecalis of Root Canal Isolate. Research Journal of Pharmacy and Technology, 3523–3530. doi:10.52711/0974-360x.2022.00591.
Hasan, M., Rusman, R., Khaldun, I., Ardana, L., Mudatsir, M., & Fansuri, H. (2020). Active edible sugar palm starch-chitosan films carrying extra virgin olive oil: Barrier, thermo-mechanical, antioxidant, and antimicrobial properties. International Journal of Biological Macromolecules, 163, 766–775. doi:10.1016/j.ijbiomac.2020.07.076.
de Queiroz Antonino, R., Lia Fook, B., de Oliveira Lima, V., de Farias Rached, R., Lima, E., da Silva Lima, R., Peniche Covas, C., & Lia Fook, M. (2017). Preparation and Characterization of Chitosan Obtained from Shells of Shrimp (Litopenaeus vannamei Boone). Marine Drugs, 15(5), 141. doi:10.3390/md15050141.
Soraya, C., Alibasyah, Z. M., & Gani, B. A. (2022). Biomass index and viscosity values of Moringa oleifera that influenced by Enterococcus faecalis. Journal of Syiah Kuala Dentistry Society, 6(1), 1–5. doi:10.24815/jds.v6i1.21885.
Yusuf, H., Husna, F., & Gani, B. A. (2021). The chemical composition of the ethanolic extract from Chromolaena odorata leaves correlates with the cytotoxicity exhibited against colorectal and breast cancer cell lines. Journal of Pharmacy & Pharmacognosy Research, 9(3), 344–356. doi:10.56499/jppres20.969_9.3.344.
Rouhani, A., Ghoddusi, J., Naghavi, N., & Al-Lawati, G. (2013). Scanning electron microscopic evaluation of dentinal tubule penetration of Epiphany in severely curved root canals. European Journal of Dentistry, 7(4), 423–428. doi:10.4103/1305-7456.120673.
Alvarez-Ordóñez, A., Mouwen, D. J. M., López, M., & Prieto, M. (2011). Fourier transform infrared spectroscopy as a tool to characterize molecular composition and stress response in foodborne pathogenic bacteria. Journal of Microbiological Methods, 84(3), 369–378. doi:10.1016/j.mimet.2011.01.009.
Sutton, S. (2011). Measurement of microbial cells by optical density. Journal of Validation technology, 17(1), 46-49.
Syafriza, D., Sutadi, H., Primasari, A., & Siregar, Y. (2020). Spectrophotometric analysis of streptococcus mutans growth and biofilm formation in Saliva and histatin-5 relate to pH and viscosity. Brazilian Research in Pediatric Dentistry and Integrated Clinic, 21, 1–11. doi:10.1590/pboci.2021.004.
Rosyada, A., Sunarharum, W. B., & Waziiroh, E. (2019). Characterization of chitosan nanoparticles as an edible coating material. IOP Conference Series: Earth and Environmental Science, 230, 012043. doi:10.1088/1755-1315/230/1/012043.
Jia-hui, Y., Yu-min, D., & Hua, Z. (1999). Blend films of chitosan-gelatin. Wuhan University Journal of Natural Sciences, 4(4), 476–476. doi:10.1007/bf02832288.
Silverstein, R., Webster, F., & Kiemle, D., (2005). Proton NMR spectrometry. Spectrometric Identification of Organic Compounds, 7th ed.; John Wiley & Sons, New York, United States.
Sorrentino, A., Gorrasi, G., & Vittoria, V. (2007). Potential perspectives of bio-nanocomposites for food packaging applications. Trends in Food Science and Technology, 18(2), 84–95. doi:10.1016/j.tifs.2006.09.004.
Gouda, M., Elayaan, U., & Youssef, M. M. (2014). Synthesis and Biological Activity of Drug Delivery System Based on Chitosan Nanocapsules. Advances in Nanoparticles, 03(04), 148–158. doi:10.4236/anp.2014.34019.
Ayele, T. T., Regasa, M. B., & Delesa, D. A. (2016). Evaluation of Antimicrobial Activity of Some Traditional Medicinal Plants and Herbs from Nekemte District against Wound Causing Bacterial Pathogens. Science, Technology and Arts Research Journal, 4(2), 199. doi:10.4314/star.v4i2.24.
Turcant, A., Deguigne, M., Ferec, S., Bruneau, C., Leborgne, I., Lelievre, B., Gegu, C., Jegou, F., Abbara, C., Le Roux, G., & Boels, D. (2017). A 6-year review of new psychoactive substances at the Centre antipoison Grand-Ouest d’Angers: Clinical and biological data. Toxicologie Analytique et Clinique, 29(1), 18–33. doi:10.1016/j.toxac.2016.12.001.
Singh, P., Shukla, R., Prakash, B., Kumar, A., Singh, S., Mishra, P. K., & Dubey, N. K. (2010). Chemical profile, antifungal, antiaflatoxigenic and antioxidant activity of Citrus maxima Burm. and Citrus sinensis (L.) Osbeck essential oils and their cyclic monoterpene, DL-limonene. Food and Chemical Toxicology, 48(6), 1734–1740. doi:10.1016/j.fct.2010.04.001.
D’Alessio, P. A., Ostan, R., Bisson, J. F., Schulzke, J. D., Ursini, M. V., & Béné, M. C. (2013). Oral administration of d-Limonene controls inflammation in rat colitis and displays anti-inflammatory properties as diet supplementation in humans. Life Sciences, 92(24–26), 1151–1156. doi:10.1016/j.lfs.2013.04.013.
d’Alessio, P., Mirshahi, M., Bisson, J.-F., & Bene, M. (2014). Skin Repair Properties of d-Limonene and Perillyl Alcohol in Murine Models. Anti-Inflammatory & Anti-Allergy Agents in Medicinal Chemistry, 13(1), 29–35. doi:10.2174/18715230113126660021.
Liu, H., Wang, C., Li, C., Qin, Y., Wang, Z., Yang, F., Li, Z., & Wang, J. (2018). A functional chitosan-based hydrogel as a wound dressing and drug delivery system in the treatment of wound healing. RSC Advances, 8(14), 7533–7549. doi:10.1039/c7ra13510f.
Yap, K. M., Sekar, M., Seow, L. J., Gan, S. H., Bonam, S. R., Mat Rani, N. N. I., Lum, P. T., Subramaniyan, V., Wu, Y. S., Fuloria, N. K., & Fuloria, S. (2021). Mangifera indica (Mango): A Promising Medicinal Plant for Breast Cancer Therapy and Understanding Its Potential Mechanisms of Action. Breast Cancer: Targets and Therapy, Volume 13, 471–503. doi:10.2147/bctt.s316667.
Alemdaroǧlu, C., Deǧim, Z., Çelebi, N., Zor, F., Öztürk, S., & Erdoǧan, D. (2006). An investigation on burn wound healing in rats with chitosan gel formulation containing epidermal growth factor. Burns, 32(3), 319–327. doi:10.1016/j.burns.2005.10.015.
Buosi, F. S., Alaimo, A., Di Santo, M. C., Elías, F., García Liñares, G., Acebedo, S. L., Castañeda Cataña, M. A., Spagnuolo, C. C., Lizarraga, L., Martínez, K. D., & Pérez, O. E. (2020). Resveratrol encapsulation in high molecular weight chitosan-based nanogels for applications in ocular treatments: Impact on human ARPE-19 culture cells. International Journal of Biological Macromolecules, 165, 804–821. doi:10.1016/j.ijbiomac.2020.09.234.
Stricker-Krongrad, A. H., Alikhassy, Z., Matsangos, N., Sebastian, R., Marti, G., Lay, F., & Harmon, J. W. (2018). Efficacy of chitosan-based dressing for control of bleeding in excisional wounds. Eplasty, 18, 122-130.
Singh, R., Shitiz, K., & Singh, A. (2017). Chitin and chitosan: biopolymers for wound management. International Wound Journal, 14(6), 1276–1289. doi:10.1111/iwj.12797.
Ferreira, P. G., Ferreira, V. F., da Silva, F. de C., Freitas, C. S., Pereira, P. R., & Paschoalin, V. M. F. (2022). Chitosans and Nanochitosans: Recent Advances in Skin Protection, Regeneration, and Repair. Pharmaceutics, 14(6), 1307. doi:10.3390/pharmaceutics14061307.
Alharbi, A.M., Alharbi, T.M., Alqahtani, M.S., Elfasakhany, F.M., Afifi, I.K., Rajeh, M. T., ... & Kenawi, L.M.M. (2023). A Comparative Evaluation of Antibacterial Efficacy of Moringa oleifera Leaf Extract, Octenidine Dihydrochloride, and Sodium Hypochlorite as Intracanal Irrigants against Enterococcus faecalis: An In Vitro Study. International Journal of Dentistry, 7690497.
Kou, X., Li, B., Olayanju, J. B., Drake, J. M., & Chen, N. (2018). Nutraceutical or pharmacological potential of Moringa oleifera Lam. Nutrients, 10(3), 343. doi:10.3390/nu10030343.
Predoi, D., Ciobanu, C. S., Iconaru, S. L., Raaen, S., Badea, M. L., & Rokosz, K. (2022). Physicochemical and Biological Evaluation of Chitosan-Coated Magnesium-Doped Hydroxyapatite Composite Layers Obtained by Vacuum Deposition. Coatings, 12(5), 702. doi:10.3390/coatings12050702.
Zhang, Y., Chan, H. F., & Leong, K. W. (2013). Advanced materials and processing for drug delivery: The past and the future. Advanced Drug Delivery Reviews, 65(1), 104–120. doi:10.1016/j.addr.2012.10.003.
Herb, M., & Schramm, M. (2021). Functions of ROS in macrophages and antimicrobial immunity. Antioxidants, 10(2), 1–39. doi:10.3390/antiox10020313.
Flora, S. J. S., & Pachauri, V. (2010). Chelation in metal intoxication. International Journal of Environmental Research and Public Health, 7(7), 2745–2788. doi:10.3390/ijerph7072745.
Islam, M. M., Shahruzzaman, M., Biswas, S., Nurus Sakib, M., & Rashid, T. U. (2020). Chitosan based bioactive materials in tissue engineering applications-A review. Bioactive Materials, 5(1), 164–183. doi:10.1016/j.bioactmat.2020.01.012.
Xu, J., Wise, J. T. F., Wang, L., Schumann, K., Zhang, Z., & Shi, X. (2017). Dual roles of oxidative stress in metal carcinogenesis. Journal of Environmental Pathology, Toxicology and Oncology, 36(4), 345–376. doi:10.1615/JEnvironPatholToxicolOncol.2017025229.
Subramaniam, T., Fauzi, M. B., Lokanathan, Y., & Law, J. X. (2021). The role of calcium in wound healing. International Journal of Molecular Sciences, 22(12), 6486. doi:10.3390/ijms22126486.
Navarro-Requena, C., Pérez-Amodio, S., Castano, O., & Engel, E. (2018). Wound healing-promoting effects stimulated by extracellular calcium and calcium-releasing nanoparticles on dermal fibroblasts. Nanotechnology, 29(39), 395102. doi:10.1088/1361-6528/aad01f.
Lansdown, A. B. G. (2002). Calcium: A potential central regulator in wound healing in the skin. Wound Repair and Regeneration, 10(5), 271–285. doi:10.1046/j.1524-475X.2002.10502.x.
Özsu, N., & Monteiro, A. (2017). Wound healing, calcium signaling, and other novel pathways are associated with the formation of butterfly eyespots. BMC Genomics, 18(1), 1–14. doi:10.1186/s12864-017-4175-7.
Kawai, K., Larson, B. J., Ishise, H., Carre, A. L., Nishimoto, S., Longaker, M., & Lorenz, H. P. (2011). Calcium-based nanoparticles accelerate skin wound healing. PLoS One, 6(11), 27106. doi:10.1371/journal.pone.0027106.
Kim, D. H., Lee, J. Y., Kim, Y. J., Kim, H. J., & Park, W. (2020). Rubi fructus water extract alleviates lps-stimulated macrophage activation via an ER stress-induced calcium/chop signaling pathway. Nutrients, 12(11), 3577. doi:10.3390/nu12113577.
Klein, G. L. (2018). The role of calcium in inflammation-associated bone resorption. Biomolecules, 8(3), 69. doi:10.3390/biom8030069.
Younis, I. (2020). Role of oxygen in wound healing. Journal of Wound Care, 29(Sup5b), S4–S10. doi:10.12968/jowc.2020.29.Sup5b.S4.
Guo, S., & DiPietro, L. A. (2010). Critical review in oral biology & medicine: Factors affecting wound healing. Journal of Dental Research, 89(3), 219–229. doi:10.1177/0022034509359125.
Liu, M., Wang, X., Li, H., Xia, C., Liu, Z., Liu, J., Yin, A., Lou, X., Wang, H., Mo, X., & Wu, J. (2021). Magnesium oxide-incorporated electrospun membranes inhibit bacterial infections and promote the healing process of infected wounds. Journal of Materials Chemistry B, 9(17), 3727–3744. doi:10.1039/d1tb00217a.
Politis, C., Schoenaers, J., Jacobs, R., & Agbaje, J. O. (2016). Wound Healing Problems in the Mouth. Frontiers in Physiology, 7. doi:10.3389/fphys.2016.00507.
Peacock, M. (2021). Phosphate Metabolism in Health and Disease. Calcified Tissue International, 108(1), 3–15. doi:10.1007/s00223-020-00686-3.
Król, A., Mizerna, K., & Bożym, M. (2020). An assessment of pH-dependent release and mobility of heavy metals from metallurgical slag. Journal of Hazardous Materials, 384, 121502. doi:10.1016/j.jhazmat.2019.121502.
Mghaiouini, R., Abdelhadi, M., Hairch, Y., Saifaoui, D., Salah, M., Abderrahmane, E., Chahid, E. G., Bensemlali, M., Belhora, F., El Mouden, M., Monkade, M., & El Bouari, A. (2022). The effect of low frequency of electromagnetic field on the freezing and cooling process of water. Materials Today: Proceedings, 66, 85–94. doi:10.1016/j.matpr.2022.03.455.
Nunthanid, J., Puttipipatkhachorn, S., Yamamoto, K., & Peck, G. E. (2001). Physical properties and molecular behavior of chitosan films. Drug Development and Industrial Pharmacy, 27(2), 143–157. doi:10.1081/DDC-100000481.
Sirkka, T., Skiba, J. B., & Apell, S. P. (2016). Wound pH depends on actual wound size. arXiv preprint arXiv:1601.06365. doi:10.1111/j.1365-2621.2006.tb15624.x.
Boron, W. F. (2004). Regulation of intracellular pH. American Journal of Physiology - Advances in Physiology Education, 28(4), 160–179. doi:10.1152/advan.00045.2004.
Sirkka, T., Skiba, J., & Apell, S., (2016). Wound pH depends on actual wound size. arXiv preprint arXiv:1601.06365. doi:10.48550/arXiv.1601.06365.
Harguindey, S., Orive, G., Luis Pedraz, J., Paradiso, A., & Reshkin, S. J. (2005). The role of pH dynamics and the Na+/H+ antiporter in the etiopathogenesis and treatment of cancer. Two faces of the same coin—one single nature. Biochimica et Biophysica Acta (BBA) - Reviews on Cancer, 1756(1), 1–24. doi:10.1016/j.bbcan.2005.06.004.
Li, Z., Zhao, Y., Liu, H., Ren, M., Wang, Z., Wang, X., Liu, H., Feng, Y., Lin, Q., Wang, C., & Wang, J. (2021). pH-responsive hydrogel loaded with insulin as a bioactive dressing for enhancing diabetic wound healing. Materials & Design, 210, 110104. doi:10.1016/j.matdes.2021.110104.
Nagoba, B. S., Suryawanshi, N. M., Wadher, B., & Selkar, S. (2015). Acidic environment and wound healing: a review. Wounds-a Compendium of Clinical Research and Practice, 27(1), 5-11.
Kant, V., Jangir, B. L., & Kumar, V. (2020). Gross and histopathological effects of dimethyl sulfoxide on wound healing in rats. Wound Medicine, 30, 100194. doi:10.1016/j.wndm.2020.100194.
Hebling, J., Bianchi, L., Basso, F. G., Scheffel, D. L., Soares, D. G., Carrilho, M. R. O., Pashley, D. H., Tjäderhane, L., & De Souza Costa, C. A. (2015). Cytotoxicity of dimethyl sulfoxide (DMSO) in direct contact with odontoblast-like cells. Dental Materials, 31(4), 399–405. doi:10.1016/j.dental.2015.01.007.
Koland, M., Vijayanarayana, K., Charyulu, Rn., & Prabhu, P. (2011). In vitro and in vivo evaluation of chitosan buccal films of ondansetron hydrochloride. International Journal of Pharmaceutical Investigation, 1(3), 164. doi:10.4103/2230-973x.85967.
Zhao, X., Wu, H., Guo, B., Dong, R., Qiu, Y., & Ma, P. X. (2017). Antibacterial anti-oxidant electroactive injectable hydrogel as self-healing wound dressing with hemostasis and adhesiveness for cutaneous wound healing. Biomaterials, 122, 34–47. doi:10.1016/j.biomaterials.2017.01.011.
Mikušová, V., & Mikuš, P. (2021). Advances in chitosan-based nanoparticles for drug delivery. International Journal of Molecular Sciences, 22(17). doi:10.3390/ijms22179652.
Daza, L. D., Eim, V. S., & Váquiro, H. A. (2021). Influence of ulluco starch concentration on the physicochemical properties of starch–chitosan biocomposite films. Polymers, 13(23), 4232. doi:10.3390/polym13234232.
Spinks, G. M., Lee, C. K., Wallace, G. G., Kim, S. I., & Kim, S. J. (2006). Swelling behavior of chitosan hydrogels in ionic liquid-water binary systems. Langmuir, 22(22), 9375–9379. doi:10.1021/la061586r.
Ostrowska-Czubenko, J., Gierszewska, M., & Pieróg, M. (2015). pH-responsive hydrogel membranes based on modified chitosan: water transport and kinetics of swelling. Journal of Polymer Research, 22(8). doi:10.1007/s10965-015-0786-3.
Kayserilioǧlu, B. Ş., Bakir, U., Yilmaz, L., & Akkaş, N. (2003). Use of xylan, an agricultural by-product, in wheat gluten based biodegradable films: Mechanical, solubility and water vapor transfer rate properties. Bioresource Technology, 87(3), 239–246. doi:10.1016/S0960-8524(02)00258-4.
Cao, Z., Luo, X., Zhang, H., Fu, Z., Shen, Z., Cai, N., Xue, Y., & Yu, F. (2016). A facile and green strategy for the preparation of porous chitosan-coated cellulose composite membranes for potential applications as wound dressing. Cellulose, 23(2), 1349–1361. doi:10.1007/s10570-016-0860-y.
Zhang, Z. H., Han, Z., Zeng, X. A., Xiong, X. Y., & Liu, Y. J. (2015). Enhancing mechanical properties of chitosan films via modification with vanillin. International Journal of Biological Macromolecules, 81, 638–643. doi:10.1016/j.ijbiomac.2015.08.042.
Pinto, E. P., Tavares, W. D. S., Matos, R. S., Ferreira, A. M., Menezes, R. P., Da Costa, M. E. H. M., De Souza, T. M., Ferreira, I. M., De Sousa, F. F. O., & Zamora, R. R. M. (2018). Influence of low and high glycerol concentrations on wettability and flexibility of chitosan biofilms. Quimica Nova, 41(10), 1109–1116. doi:10.21577/0100-4042.20170287.
Rachtanapun, P., Klunklin, W., Jantrawut, P., Jantanasakulwong, K., Phimolsiripol, Y., Seesuriyachan, P., Leksawasdi, N., Chaiyaso, T., Ruksiriwanich, W., Phongthai, S., Sommano, S. R., Punyodom, W., Reungsang, A., & Ngo, T. M. P. (2021). Characterization of chitosan film incorporated with curcumin extract. Polymers, 13(6). doi:10.3390/polym13060963.
Malm, M., Liceaga, A. M., San Martin-Gonzalez, F., Jones, O. G., Garcia-Bravo, J. M., & Kaplan, I. (2021). Development of Chitosan Films from Edible Crickets and Their Performance as a Bio-Based Food Packaging Material. Polysaccharides, 2(4), 744–758. doi:10.3390/polysaccharides2040045.
Zhang, Z., & Angst, U. (2020). A Dual-Permeability Approach to Study Anomalous Moisture Transport Properties of Cement-Based Materials. Transport in Porous Media, 135(1), 59–78. doi:10.1007/s11242-020-01469-y.
Dai, Z., Ansaloni, L., Ryan, J. J., Spontak, R. J., & Deng, L. (2018). Nafion/IL hybrid membranes with tuned nanostructure for enhanced CO2 separation: Effects of ionic liquid and water vapor. Green Chemistry, 20(6), 1391–1404. doi:10.1039/c7gc03727a.
Palivan, C. G., Goers, R., Najer, A., Zhang, X., Car, A., & Meier, W. (2016). Bioinspired polymer vesicles and membranes for biological and medical applications. Chemical Society Reviews, 45(2), 377–411. doi:10.1039/c5cs00569h.
Liu, Y., Cai, Z., Sheng, L., Ma, M., Xu, Q., & Jin, Y. (2019). Structure-property of crosslinked chitosan/silica composite films modified by genipin and glutaraldehyde under alkaline conditions. Carbohydrate Polymers, 215, 348–357. doi:10.1016/j.carbpol.2019.04.001.
Jakfar, S., Lin, T. C., Chen, Z. Y., Yang, I. H., Gani, B. A., Ningsih, D. S., Kusuma, H., Chang, C. T., & Lin, F. H. (2022). A Polysaccharide Isolated from the Herb Bletilla striata Combined with Methylcellulose to Form a Hydrogel via Self-Assembly as a Wound Dressing. International Journal of Molecular Sciences, 23(19), 12019. doi:10.3390/ijms231912019.
Wang, Y., Cheng, G., Wu, W., Qiao, Q., Li, Y., & Li, X. (2015). Effect of pH and chloride on the micro-mechanism of pitting corrosion for high strength pipeline steel in aerated NaCl solutions. Applied Surface Science, 349, 746–756. doi:10.1016/j.apsusc.2015.05.053.
Tong, X., Sheng, G., Yang, D., Li, S., Lin, C. W., Zhang, W., Chen, Z., Wei, C., Yang, X., Shen, F., Shao, Y., Wei, H., Zhu, Y., Sun, J., Kaner, R. B., & Shao, Y. (2022). Crystalline tetra-aniline with chloride interactions towards a biocompatible supercapacitor. Materials Horizons, 9(1), 383–392. doi:10.1039/d1mh01081f.
Reichardt, A. (2014). Tissue engineering of human heart valves: prerequisites for a reproducible fabrication process. PhD Thesis, Technische Universität Berlin, Berlin, Germany.
Simi, C. K., & Abraham, T. E. (2010). Biodegradable biocompatible xyloglucan films for various applications. Colloid and Polymer Science, 288(3), 297–306. doi:10.1007/s00396-009-2151-8.
Zhang, L., Zhang, Z., Chen, Y., Ma, X., & Xia, M. (2021). Chitosan and procyanidin composite films with high antioxidant activity and pH responsivity for cheese packaging. Food Chemistry, 338, 128013. doi:10.1016/j.foodchem.2020.128013.
Pragati, S., Ashok, S., & Kuldeep, S. (2009). Recent advances in periodontal drug delivery systems. International Journal of Drug Delivery, 1(1), 1–14. doi:10.5138/ijdd.2009.0975.0215.01001.
Venkataramani, S., Truntzer, J., & Coleman, D. R. (2013). Thermal stability of high concentration lysozyme across varying pH: A Fourier Transform Infrared study. Journal of Pharmacy and Bioallied Sciences, 5(2), 148–153. doi:10.4103/0975-7406.111821.
Bhargav, H. S., Shastri, S. D., Poornav, S. P., Darshan, K. M., & Nayak, M. M. (2016). Measurement of the Zone of Inhibition of an Antibiotic. 2016 IEEE 6th International Conference on Advanced Computing (IACC). doi:10.1109/iacc.2016.82.
Dai, T., Tanaka, M., Huang, Y. Y., & Hamblin, M. R. (2011). Chitosan preparations for wounds and burns: Antimicrobial and wound-healing effects. Expert Review of Anti-Infective Therapy, 9(7), 857–879. doi:10.1586/eri.11.59.
Khattak, R. Z., Nawaz, A., Alnuwaiser, M. A., Latif, M. S., Rashid, S. A., Khan, A. A., & Alamoudi, S. A. (2022). Formulation, In Vitro Characterization and Antibacterial Activity of Chitosan-Decorated Cream Containing Bacitracin for Topical Delivery. Antibiotics, 11(9). doi:10.3390/antibiotics11091151.
Yan, D., Li, Y., Liu, Y., Li, N., Zhang, X., & Yan, C. (2021). Antimicrobial properties of chitosan and chitosan derivatives in the treatment of enteric infections. Molecules, 26(23). doi:10.3390/molecules26237136.
Alven, S., & Aderibigbe, B. A. (2020). Chitosan and cellulose-based hydrogels for wound management. International Journal of Molecular Sciences, 21(24), 1–30. doi:10.3390/ijms21249656.
Yilmaz Atay, H. (2019). Antibacterial Activity of Chitosan-Based Systems. Functional Chitosan. Springer, Singapore. doi:10.1007/978-981-15-0263-7_15.
DOI: 10.28991/ESJ-2023-07-03-012
Refbacks
- There are currently no refbacks.
Copyright (c) 2023 Basri A. Gani