Immobilization and Stabilization of Aspergillus Fumigatus α-Amylase by Adsorption on a Chitin

Yandri Yandri, Ezra Rheinsky Tiarsa, Tati Suhartati, Bambang Irawan, Sutopo Hadi

Abstract


In this research, immobilization of A. fumigatus α-amylase on chitin was studied with the main purpose to improve the characteristics of the enzyme. A series of experiments were carried out to study stability improvement, thermodynamic parameters, include ki, ΔGi, and t½, and reusability of the immobilized enzyme. The experimental results indicate that significant thermal stability was achieved, as indicates by the ability of the enzyme to retain its relative activity above 39% after 80 min of incubation at 60oC. Thermodynamic parameters, include ki, ΔGi, and t½, indicate that the immobilized enzyme is more rigid, stable, and less flexible in the water, resulting in increased stability up to 1.5 times compared to that of the native enzyme. Furthermore, the immobilized enzyme was able to retain over 46% of its initial activity after six consecutive applications for starch hydrolysis, confirming the potential of chitin for the production of immobilized enzymes on an industrial scale.

 

Doi: 10.28991/ESJ-2023-07-01-06

Full Text: PDF


Keywords


α-Amylase; Chitin; Aspergillus Fumigatus; Immobilization; Stabilization.

References


Far, B. E., Ahmadi, Y., Khosroushahi, A. Y., & Dilmaghani, A. (2020). Microbial alpha-amylase production: Progress, challenges and perspectives. Advanced Pharmaceutical Bulletin, 10(3), 350–358. doi:10.34172/apb.2020.043.

Vogel, A., & May, O. (2019). Industrial Enzyme Applications (1stEd.). Wiley-VCH, Hoboken, New Jersey, United States. doi:10.1002/9783527813780.

Vitolo, M. (2001). Enzymatic Modification of starch. World Journal of Pharmacy and Pharmaceutical Sciences, 9(4), 1341–1358. doi:10.20959/wjpps/20204-15958.

Ebrahimi, M., Akhavan, T., & Hekmat, A. (2020). Structural evidence for kinetic and thermal stability changes of α-amylase due to exposure to [emim][lactate] ionic liquid. Turkish Journal of Biochemistry, 45(6), 785–791. doi:10.1515/tjb-2019-0270.

Yandri, Y., Ropingi, H., Suhartati, T., Hendri, J., Irawan, B., & Hadi, S. (2022). The Effect of Zeolite/Chitosan Hybrid Matrix for Thermal-stabilization Enhancement on the Immobilization of Aspergillus fumigatus α-Amylase. Emerging Science Journal, 6(3), 505–518. doi:10.28991/ESJ-2022-06-03-06.

Cheetham, P. (1981). Immobilized enzymes: An introduction and applications in biotechnology. Biochemical Education, 9(3), 119. doi:10.1016/0307-4412(81)90251-x.

Zhang, Y., Ge, J., & Liu, Z. (2015). Enhanced Activity of Immobilized or Chemically Modified Enzymes. ACS Catalysis, 5(8), 4503–4513. doi:10.1021/acscatal.5b00996.

Mateo, C., Palomo, J. M., Fernandez-Lorente, G., Guisan, J. M., & Fernandez-Lafuente, R. (2007). Improvement of enzyme activity, stability and selectivity via immobilization techniques. Enzyme and Microbial Technology, 40(6), 1451–1463. doi:10.1016/j.enzmictec.2007.01.018.

Mohammadi, M., Rezaei Mokarram, R., Shahvalizadeh, R., Sarabandi, K., Lim, L. T., & Hamishehkar, H. (2020). Immobilization and stabilization of pectinase on an activated montmorillonite support and its application in pineapple juice clarification. Food Bioscience, 36, 1–8. doi:10.1016/j.fbio.2020.100625.

Ikegaya, K. (2005). Kinetic analysis about the effects of neutral salts on the thermal stability of yeast alcohol dehydrogenase. Journal of Biochemistry, 137(3), 349–354. doi:10.1093/jb/mvi037.

Kazan, D., Ertan, H., & Erarslan, A. (1997). Stabilization of Escherichia coli penicillin G acylase against thermal inactivation by cross-linking with dextran dialdehyde polymers. Applied Microbiology and Biotechnology, 48(2), 191–197. doi:10.1007/s002530051037.

Dp, S., Vu, B., Geetha G, & Pv, M. (2019). Improvement in the Properties of α-Amylase Enzyme by Immobilization using Metal Oxide Nanocomposites as Carriers. Advances in Nanomedicine and Nanotechnology Research, 2(1), 77–88.

Van De Veerdonk, F. L., Gresnigt, M. S., Romani, L., Netea, M. G., & Latgé, J. P. (2017). Aspergillus fumigatus morphology and dynamic host interactions. Nature Reviews Microbiology, 15(11), 661–674. doi:10.1038/nrmicro.2017.90.

Anu Bhushani, J., & Anandharamakrishnan, C. (2014). Electrospinning and electrospraying techniques: Potential food based applications. Trends in Food Science and Technology, 38(1), 21–33. doi:10.1016/j.tifs.2014.03.004.

Mei, S., Han, P., Wu, H., Shi, J., Tang, L., & Jiang, Z. (2018). One-pot fabrication of chitin-shellac composite microspheres for efficient enzyme immobilization. Journal of Biotechnology, 266(1), 1–8. doi:10.1016/j.jbiotec.2017.11.015.

Ravi Kumar, M. N. V. (2000). A review of chitin and chitosan applications. Reactive and Functional Polymers, 46(1), 1–27. doi:10.1016/S1381-5148(00)00038-9.

Younes, I., & Rinaudo, M. (2015). Chitin and chitosan preparation from marine sources. Structure, properties and applications. Marine Drugs, 13(3), 1133–1174. doi:10.3390/md13031133.

Zdarta, J., Meyer, A. S., Jesionowski, T., & Pinelo, M. (2018). A general overview of support materials for enzyme immobilization: Characteristics, properties, practical utility. Catalysts, 8(2), 1–27. doi:10.3390/catal8020092.

Saravanan, D., Hemalatha, R., & Sudha, P. N. (2011). Synthesis and characterization of cross linked chitin/bentonite polymer blend and adsorption studies of Cu (II) and Cr (VI) on chitin. Der Pharma Chemica, 3(6), 406–424.

Robinson, P. K. (2015). Enzymes: principles and biotechnological applications. Essays in Biochemistry, 59(1), 1–41. doi:10.1042/BSE0590001.

Alnadari, F., Xue, Y., Zhou, L., Hamed, Y. S., Taha, M., & Foda, M. F. (2020). Immobilization of β-Glucosidase from Thermatoga maritima on Chitin-functionalized Magnetic Nanoparticle via a Novel Thermostable Chitin-binding Domain. Scientific Reports, 10(1), 1–12. doi:10.1038/s41598-019-57165-5.

Yandri, Y., Tiarsa, E. R., Suhartati, T., Satria, H., Irawan, B., & Hadi, S. (2022). The Stability Improvement of α -Amylase Enzyme from Aspergillus fumigatus by Immobilization on a Bentonite Matrix. Biochemistry Research International, 2022(1), 1–7. doi:10.1155/2022/3797629.

Classics Lowry, O., Rosebrough, N., Farr, A., & Randall, R.. (1951). Protein Measurement with the Folin Phenol Reagent. Journal of Biological Chemistry, 193(1), 265–275. doi:10.1016/s0021-9258(19)52451-6.

Tiarsa, E. R., Yandri, Y., Suhartati, T., Satria, H., Irawan, B., & Hadi, S. (2022). The Stability Improvement of Aspergillus fumigatus α -Amylase by Immobilization onto Chitin-Bentonite Hybrid. Biochemistry Research International, 2022(1), 1–9. doi:10.1155/2022/5692438.

Fuwa, H. (1954). A new method for microdetermination of amylase activity by the use of amylose as the substrate. Journal of Biochemistry, 41(5), 583–603. doi:10.1093/oxfordjournals.jbchem.a126476.

Yandri, Suhartati, T., Yuwono, S. D., Qudus, H. I., Tiarsa, E. R., & Hadi, S. (2018). Immobilization of α-amylase from bacillus subtilis ITBCCB148 using bentonit. Asian Journal of Microbiology, Biotechnology and Environmental Sciences, 20(2), 487–492.

Eveleigh, D. E., Mandels, M., Andreotti, R., & Roche, C. (2009). Measurement of Saccharifying Cellulase. Biotechnology for Biofuels, 2(1), 21. doi:10.1186/1754-6834-2-21.

Ahmed, N. E., El Shamy, A. R., & Awad, H. M. (2020). Optimization and immobilization of amylase produced by Aspergillus terreus using pomegranate peel waste. Bulletin of the National Research Centre, 44(1), 1–12. doi:10.1186/s42269-020-00363-3.

Yang, Z., Domach, M., Auger, R., Yang, F. X., & Russell, A. J. (1996). Polyethylene glycol-induced stabilization of subtilisin. Enzyme and Microbial Technology, 18(2), 82–89. doi:10.1016/0141-0229(95)00073-9.

Sirisha, V. L., Jain, A., & Jain, A. (2016). Enzyme Immobilization: An Overview on Methods, Support Material, and Applications of Immobilized Enzymes. Advances in Food and Nutrition Research, 79, 179–211. doi:10.1016/bs.afnr.2016.07.004.

Emmerich, K., Madsen, F. T., & Kahr, G. (1999). Dehydroxylation behavior of heat-treated and steam-treated homoionic cis-vacant montmorillonites. Clays and Clay Minerals, 47(5), 591–604. doi:10.1346/CCMN.1999.0470506.

Kumari, A., & Kayastha, A. M. (2011). Immobilization of soybean (Glycine max) α-amylase onto Chitosan and Amberlite MB-150 beads: Optimization and characterization. Journal of Molecular Catalysis B: Enzymatic, 69(1–2), 8–14. doi:10.1016/j.molcatb.2010.12.003.

Genç, N., Dogan, E. C., & Yurtsever, M. (2013). Bentonite for ciprofloxacin removal from aqueous solution. Water Science and Technology, 68(4), 848–855. doi:10.2166/wst.2013.313.

Fujimoto, Z., Takase, K., Doui, N., Momma, M., Matsumoto, T., & Mizuno, H. (1998). Crystal structure of a catalytic-site mutant α-amylase from Bacillus subtilis complexed with maltopentaose. Journal of Molecular Biology, 277(2), 393–407. doi:10.1006/jmbi.1997.1599.

Fernandez-Lafuente, R. (2009). Stabilization of multimeric enzymes: Strategies to prevent subunit dissociation. Enzyme and Microbial Technology, 45(6–7), 405–418. doi:10.1016/j.enzmictec.2009.08.009.

Abdel-Mageed, H. M., El-Laithy, H. M., Mahran, L. G., Fahmy, A. S., Mäder, K., & Mohamed, S. A. (2012). Development of novel flexible sugar ester vesicles as carrier systems for the antioxidant enzyme catalase for wound healing applications. Process Biochemistry, 47(7), 1155–1162. doi:10.1016/j.procbio.2012.04.008.

Secundo, F. (2013). Conformational changes of enzymes upon immobilisation. Chemical Society Reviews, 42(15), 6250–6261. doi:10.1039/c3cs35495d.

Yang, X. Y., Tian, G., Jiang, N., & Su, B. L. (2012). Immobilization technology: A sustainable solution for biofuel cell design. Energy and Environmental Science, 5(2), 5540–5563. doi:10.1039/c1ee02391h.

Mohamad, N. R., Marzuki, N. H. C., Buang, N. A., Huyop, F., & Wahab, R. A. (2015). An overview of technologies for immobilization of enzymes and surface analysis techniques for immobilized enzymes. Biotechnology & Biotechnological Equipment, 29(2), 205–220. doi:10.1080/13102818.2015.1008192.

Almulaiky, Y. Q., El-Shishtawy, R. M., Aldhahri, M., Mohamed, S. A., Afifi, M., Abdulaal, W. H., & Mahyoub, J. A. (2019). Amidrazone modified acrylic fabric activated with cyanuric chloride: A novel and efficient support for horseradish peroxidase immobilization and phenol removal. International Journal of Biological Macromolecules, 140(78), 949–958. doi:10.1016/j.ijbiomac.2019.08.179.


Full Text: PDF

DOI: 10.28991/ESJ-2023-07-01-06

Refbacks

  • There are currently no refbacks.


Copyright (c) 2022 Yandri Yandri, Ezra Rheinsky Tiarsa, Tati Suhartati, Bambang Irawan, Sutopo Hadi