Optimization of Markov Weighted Fuzzy Time Series Forecasting Using Genetic Algorithm (GA) and Particle Swarm Optimization (PSO)

Sugiyarto Surono, Khang Wen Goh, Choo Wou Onn, Afif Nurraihan, Nauval Satriani Siregar, A. Borumand Saeid, Tommy Tanu Wijaya


The Markov Weighted Fuzzy Time Series (MWFTS) is a method for making predictions based on developing a fuzzy time series (FTS) algorithm. The MWTS has overcome certain limitations of FTS, such as repetition of fuzzy logic relationships and weight considerations of fuzzy logic relationships. The main challenge of the MWFTS method is the absence of standardized rules for determining partition intervals. This study compares the MWFTS model to the partition methods Genetic Algorithm-Fuzzy K-Medoids clustering (GA-FKM) and Fuzzy K-Medoids clustering-Particle Swarm Optimization (FKM-PSO) to solve the problem of determining the partition interval and develop an algorithm. Optimal partition optimization. The GA optimization algorithm’s performance on GA-FKM depends on optimizing the clustering of FKM to obtain the most significant partition interval. Implementing the PSO optimization algorithm on FKM-PSO involves maximizing the interval length following the FKM procedure. The proposed method was applied to Anand Vihar, India’s air quality data. The MWFTS method combined with the GA-FKM partitioning method reduced the mean absolute square error (MAPE) from 17.440 to 16.85%. While the results of forecasting using the MWFTS method in conjunction with the FKM-PSO partition method were able to reduce the MAPE percentage from 9.78% to 7.58%, the MAPE percentage was still 9.78%. Initially, the root mean square error (RMSE) score for the GA-FKM partitioning technique was 48,179 to 47,01. After applying the FKM-PSO method, the initial RMSE score of 30,638 was reduced to 24,863.


Doi: 10.28991/ESJ-2022-06-06-010

Full Text: PDF


Fuzzy; Optimization; Forecasting; Markov; Clustering.


Liu, S., Zhou, Y., Liu, S., Chen, X., Zou, W., Zhao, D., … Ran, P. (2016). Association between exposure to ambient particulate matter and chronic obstructive pulmonary disease: results from a cross-sectional study in China. Thorax, 72(9), 788–795. doi:10.1136/thoraxjnl-2016-208910.

Guo, C., Hoek, G., Chang, L. Y., Bo, Y., Lin, C., Huang, B., ... & Lao, X. Q. (2019). Long-term exposure to ambient fine particulate matter (PM 2.5) and lung function in children, adolescents, and young adults: a longitudinal cohort study. Environmental health perspectives, 127(12), 127008. doi:10.1289/EHP5220.

Kumar, U., & Jain, V. K. (2010). ARIMA forecasting of ambient air pollutants (O 3, NO, NO2 and CO). Stochastic Environmental Research and Risk Assessment, 24(5), 751–760. doi:10.1007/s00477-009-0361-8.

Sharma, P., Chandra, A., & Kaushik, S. C. (2009). Forecasts using Box-Jenkins models for the ambient air quality data of Delhi City. Environmental Monitoring and Assessment, 157(1–4), 105–112. doi:10.1007/s10661-008-0520-2.

Nebenzal, A., & Fishbain, B. (2018). Long-term forecasting of nitrogen dioxide ambient levels in metropolitan areas using the discrete-time Markov model. Environmental Modelling and Software, 107, 175–185. doi:10.1016/j.envsoft.2018.06.001.

Alyousifi, Y., Masseran, N., & Ibrahim, K. (2018). Modeling the stochastic dependence of air pollution index data. Stochastic Environmental Research and Risk Assessment, 32(6), 1603–1611. doi:10.1007/s00477-017-1443-7.

Güler Dincer, N., & Akkuş, Ö. (2018). A new fuzzy time series model based on robust clustering for forecasting of air pollution. Ecological Informatics, 43, 157–164. doi:10.1016/j.ecoinf.2017.12.001.

Aripin, A., Suryono, S., & Bayu, S. (2016). Web based prediction of pollutant PM10 concentration using Ruey Chyn Tsaur fuzzy time series model. In AIP Conference Proceedings, AIP Publishing LLC, 1746(1), 020046. doi:10.1063/1.4953971.

Saputra, B. D. (2019). A Fuzzy Time Series-Markov Chain Model to Forecast Fish Farming Product. Kursor, 9(4), 129–138. doi:10.28961/kursor.v9i4.167.

Cheng, C. H., Chen, T. L., Teoh, H. J., & Chiang, C. H. (2008). Fuzzy time-series based on adaptive expectation model for TAIEX forecasting. Expert Systems with Applications, 34(2), 1126–1132. doi:10.1016/j.eswa.2006.12.021.

David, G. S., Rizol, P. M. S. R., & Nascimento, L. F. C. (2017). Modelos Computacionais Fuzzy Para Avaliar Efeitos Da Poluição Do Ar Em Crianças. Revista Paulista de Pediatria, 36(1), 10–16. doi:10.1590/1984-0462/;2018;36;1;00013. (In Portuguese).

Sharma, Y., & Sisodia, S. (2014). Temperature Prediction Based on Fuzzy Time Series and MTPSO with Automatic Clustering Algorithm. 2014 2nd International Symposium on Computational and Business Intelligence. doi:10.1109/iscbi.2014.29.

Chen, S.-M. (1996). Forecasting enrollments based on fuzzy time series. Fuzzy Sets and Systems, 81(3), 311–319. doi:10.1016/0165-0114(95)00220-0.

Huarng, K. (2001). Effective lengths of intervals to improve forecasting in fuzzy time series. Fuzzy Sets and Systems, 123(3), 387–394. doi:10.1016/S0165-0114(00)00057-9.

Kunhuang Huarng, & Tiffany Hui-Kuang Yu. (2006). Ratio-based lengths of intervals to improve fuzzy time series forecasting. IEEE Transactions on Systems, Man and Cybernetics, Part B (Cybernetics), 36(2), 328–340. doi:10.1109/tsmcb.2005.857093.

Yu, H. K. (2005). Weighted fuzzy time series models for TAIEX forecasting. Physica A: Statistical Mechanics and Its Applications, 349(3–4), 609–624. doi:10.1016/j.physa.2004.11.006.

Efendi, R., Ismail, Z., & Deris, M. M. (2013). Improved weight fuzzy time series as used in the exchange rates forecasting of us dollar to Ringgit Malaysia. International Journal of Computational Intelligence and Applications, 12(1), 1–19,. doi:10.1142/S1469026813500053.

Tsaur, R. C. (2012). A fuzzy time series-Markov chain model with an application to forecast the exchange rate between the Taiwan and US dollar. International journal of innovative computing, information and control, 8(7B), 4931-4942.

Alyousifi, Y., Othman, M., Faye, I., Sokkalingam, R., & Silva, P. C. L. (2020). Markov Weighted Fuzzy Time-Series Model Based on an Optimum Partition Method for Forecasting Air Pollution. International Journal of Fuzzy Systems, 22(5), 1468–1486. doi:10.1007/s40815-020-00841-w.

Istianto, Y., & ’Uyun, S. (2021). Klasifikasi Kebutuhan Jumlah Produk Makanan Customer Menggunakan K-Means Clustering dengan Optimasi Pusat Awal Cluster Algoritma Genetika. Jurnal Teknologi Informasi Dan Ilmu Komputer, 8(5), 861. doi:10.25126/jtiik.2021842990. (In Indonesian).

Kuo, I.-H., Horng, S.-J., Kao, T.-W., Lin, T.-L., Lee, C.-L., & Pan, Y. (2009). An improved method for forecasting enrollments based on fuzzy time series and particle swarm optimization. Expert Systems with Applications, 36(3), 6108–6117. doi:10.1016/j.eswa.2008.07.043.

Mesquita, D. P. P., Gomes, J. P. P., Souza Junior, A. H., & Nobre, J. S. (2017). Euclidean distance estimation in incomplete datasets. Neurocomputing, 248, 11–18. doi:10.1016/j.neucom.2016.12.081.

Al-Zoubi, M. B., Al-Dahoud, A. & AL-Akhras, M. (2010). An Efficient Fuzzy K-Medoids Method. World Applied Science Journal, 10(5), 574–583.

Ross, T. J. (2010). Fuzzy Logic with Engineering Applications. John Wiley & Sons, Hoboken, United States. doi:10.1002/9781119994374.

Haerani, E. (2014). Analysis of Fuzzy Logic Control Using COA (Center of Area) Defuzzification Method, Bisektor, MOM (mean of Maximum), LOM (Largest of Maximum), AND SOM (Smallest of Maximum). SITEKIN: Jurnal Sains, Teknologi dan Industri, 10(2), 245-253. (In Indonesia).

Nisa, A. K., Abdy, M., & Zaki, A. (2020). Penerapan Fuzzy Logic untuk Menentukan Minuman Susu Kemasan Terbaik dalam Pengoptimalan Gizi. Journal of Mathematics Computations and Statistics, 3(1), 51. doi:10.35580/jmathcos.v3i1.19902.

Yuliana, D. (2019). Fuzzy inference system mamdani method to identify early types of respiratory allergies in children aged 3–6 years. Jurnal Lentera Ict, 5(2), 1-10. (In Indonesian).

Çinar, S. M. (2022). Developing hierarchical fuzzy logic controllers to improve the energy efficiency and cutting rate stabilization of natural stone block-cutting machines. Journal of Cleaner Production, 355, 131799. doi:10.1016/j.jclepro.2022.131799.

Jatipaningrum, M. T. (2016). Forecasting Gross Domestic Product Data with Fuzzy Time Series Markov Chain. Jurnal Teknologi, 9(1), 31-38. (In Indonesian).

Nur, I. M., Pietoyo, A., & Basir, E. A. (2020). Implementation of the fuzzy time series singh method in forecasting the banggai cardinalfish at the ambon sea culture fisheries center. Prosiding Seminar Nasional Venue Artikulasi-Riset, Inovasi, Resonansi-Teori, dan Aplikasi Statistika (VARIANSI), 2(1), 138-148. (In Indonesian).

Zhang, Z. (2012). Fuzzy Time Series Forecasting Based On K-Means Clustering. Open Journal of Applied Sciences, 02(04), 100–103. doi:10.4236/ojapps.2012.24b024.

Babbar, D., Areendran, G., Sahana, M., Sarma, K., Raj, K., & Sivadas, A. (2021). Assessment and prediction of carbon sequestration using Markov chain and InVEST model in Sariska Tiger Reserve, India. Journal of Cleaner Production, 278, 123333. doi:10.1016/j.jclepro.2020.123333.

Arpan, Y., & Dewi, P. C. (2018). Brand Switching Analysis of Gojek Online Transportation Users with the Markov Chain Method in Bandar Lampung City. Valid: Jurnal Ilmiah, 15(2), 151-162. (In Indonesia).

Dehghani, M., Hubálovský, Š., & Trojovský, P. (2021). Cat and mouse based optimizer: A new nature-inspired optimization algorithm. Sensors, 21(15), 1–30. doi:10.3390/s21155214.

Septyanto, R. B., Setyaningsih, E., & Bacharuddin, F. (2018). Analisis Penempatan Evolved Node B Area DKI Jakarta Dengan Menggunakan Algoritma Genetika Dan Evolutionary Programming. TESLA: Jurnal Teknik Elektro, 19(2), 108. doi:10.24912/tesla.v19i2.2694. (In Indonesian).

Pane, S. F., Awangga, R. M., & Az, M. (2019). Sireuboh: Klasifikasi Data Lokasi Barang Menggunakan Region of Interest (ROI) Dan Algoritma Ransac. Jurnal Tekno Insentif, 12(2), 36–40. doi:10.36787/jti.v12i2.98. (In Indonesian).

Pal, S.S., Kar, S. (2019). Fuzzy Time Series Model for Unequal Interval Length Using Genetic Algorithm. Information Technology and Applied Mathematics. Advances in Intelligent Systems and Computing, 699, Springer, Singapore. doi:10.1007/978-981-10-7590-2_15.

Mirjalili, S., Song Dong, J., Sadiq, A.S., Faris, H. (2020). Genetic Algorithm: Theory, Literature Review, and Application in Image Reconstruction. Nature-Inspired Optimizers, Studies in Computational Intelligence, 811. Springer, Cham, Switzerland. doi:10.1007/978-3-030-12127-3_5.

Santosa, B. (2006). Particle swarm optimization tutorial. Sukolilo Surabaya: Kampus ITS, 66. (In Indonesia).

Van Tinh, N. (2020). Enhanced Forecasting Accuracy of Fuzzy Time Series Model Based on Combined Fuzzy C-Mean Clustering with Particle Swam Optimization. International Journal of Computational Intelligence and Applications, 19(2). doi:10.1142/S1469026820500170.

Muhammad, M., Wahyuningsih, S., & Siringoringo, M. (2021). Peramalan Nilai Tukar Petani Subsektor Peternakan Menggunakan Fuzzy Time Series Lee. Jambura Journal of Mathematics, 3(1), 1–15. doi:10.34312/jjom.v3i1.5940. (In Indonesian).

Koo, J. W., Wong, S. W., Selvachandran, G., Long, H. V., & Son, L. H. (2020). Prediction of Air Pollution Index in Kuala Lumpur using fuzzy time series and statistical models. Air Quality, Atmosphere and Health, 13(1), 77–88. doi:10.1007/s11869-019-00772-y.

Sinaga, H. D. E., & Irawati, N. (2018). Perbandingan Double Moving Average Dengan Double Exponential Smoothing Pada Peramalan Bahan Medis Habis Pakai. Jurnal Teknologi dan Sistem Informasi, 4(2), 197-204. doi:10.33330/jurteksi.v4i2.60.

Full Text: PDF

DOI: 10.28991/ESJ-2022-06-06-010


  • There are currently no refbacks.

Copyright (c) 2022 Khang Wen Goh