Are New Residential Areas Cooler than Older Ones?

Ryoichi Doi

Abstract


This study was conducted to investigate if passive cooling technologies have been implemented in commercially supplied new residential areas in Bangkok and to observe if there were significant differences in the land surface temperature (LST) compared to old residential areas. Values of LST were compared among 62 residential areas that differed in completion year. The mean LST for the most recent residential areas completed in 2013 or later was significantly less than that for the other older categories, suggesting that passive cooling effects were significantly better functioning in the new residential areas. A roof treatment on old buildings in a public housing project was still quantitatively effective after 8 years. This suggested the possibility of a deteriorated cooling function in the older categories among the residential areas. The possibility of deterioration was quantitatively investigated. The results stressed the importance of the periodic maintenance of passive cooling functions. As an extension of precise basic studies, this is the first study to quantify the passive cooling effects on commercially supplied residential areas. In terms of spatial extent, this residential area–scale study bridges precise analyses of single buildings/materials and regional observations, mainly relying on satellite data. The study results can aid in the mitigation and prevention of the urban heat island phenomenon.

 

Doi: 10.28991/ESJ-2022-06-06-08

Full Text: PDF


Keywords


Energy; Global Warming; Information Sharing; Sustainability; Thailand; Tropics.

References


Song, Y. ling, Darani, K. S., Khdair, A. I., Abu-Rumman, G., & Kalbasi, R. (2021). A review on conventional passive cooling methods applicable to arid and warm climates considering economic cost and efficiency analysis in resource-based cities. Energy Reports, 7, 2784–2820. doi:10.1016/j.egyr.2021.04.056.

Al-Obaidi, K. M., Ismail, M., & Abdul Rahman, A. M. (2014). Passive cooling techniques through reflective and radiative roofs in tropical houses in Southeast Asia: A literature review. Frontiers of Architectural Research, 3(3), 283–297. doi:10.1016/j.foar.2014.06.002.

Akbari, H., Levinson, R., Rosenfeld, A., & Elliot, M. (2009). Global cooling: policies to cool the world and offset global warming from CO2 using reflective roofs and pavements. Lawrence Berkeley National Laboratory, Berkeley, United States.

Akbari, H., Berdahl, P., Levinson, R., Wiel, S., Miller, B., & Desjarlais, A. (2006). Cool color roofing materials. California Energy Commission PIER Program; Heat Island Group, Lawrence Berkeley National Laboratory, Berkeley, United States.

Chapman, S., Watson, J. E. M., Salazar, A., Thatcher, M., & McAlpine, C. A. (2017). The impact of urbanization and climate change on urban temperatures: a systematic review. Landscape Ecology, 32(10), 1921–1935. doi:10.1007/s10980-017-0561-4.

Faraj, K., Khaled, M., Faraj, J., Hachem, F., & Castelain, C. (2020). Phase change material thermal energy storage systems for cooling applications in buildings: A review. Renewable and Sustainable Energy Reviews, 119, 109579. doi:10.1016/j.rser.2019.109579.

Ben Romdhane, S., Amamou, A., Ben Khalifa, R., Saïd, N. M., Younsi, Z., & Jemni, A. (2020). A review on thermal energy storage using phase change materials in passive building applications. Journal of Building Engineering, 32, 101563. doi:10.1016/j.jobe.2020.101563.

Wong, N. H., Tan, C. L., Kolokotsa, D. D., & Takebayashi, H. (2021). Greenery as a mitigation and adaptation strategy to urban heat. Nature Reviews Earth & Environment, 2(3), 166–181. doi:10.1038/s43017-020-00129-5.

Sakiyama, N. R. M., Carlo, J. C., Frick, J., & Garrecht, H. (2020). Perspectives of naturally ventilated buildings: A review. Renewable and Sustainable Energy Reviews, 130, 109933. doi:10.1016/j.rser.2020.109933.

Amaral, R. E. C., Brito, J., Buckman, M., Drake, E., Ilatova, E., Rice, P., … Abraham, Y. S. (2020). Waste Management and Operational Energy for Sustainable Buildings: A Review. Sustainability, 12(13), 5337. doi:10.3390/su12135337.

Piselli, C., Prabhakar, M., de Gracia, A., Saffari, M., Pisello, A. L., & Cabeza, L. F. (2020). Optimal control of natural ventilation as passive cooling strategy for improving the energy performance of building envelope with PCM integration. Renewable Energy, 162, 171–181. doi:10.1016/j.renene.2020.07.043.

Al-Yasiri, Q., & Szabó, M. (2021). Incorporation of phase change materials into building envelope for thermal comfort and energy saving: A comprehensive analysis. Journal of Building Engineering, 36, 102122. doi:10.1016/j.jobe.2020.102122.

Kotopouleas, A., Giridharan, R., Nikolopoulou, M., Watkins, R., & Yeninarcilar, M. (2021). Experimental investigation of the impact of urban fabric on canyon albedo using a 1:10 scaled physical model. Solar Energy, 230, 449–461. doi:10.1016/j.solener.2021.09.074.

National Statistical Office of Thailand. (2019). Hidden population in Thailand. Ministry of Information and Communication Technology, Bangkok, Thailand.

Thaitakoo, D., McGrath, B. (2017). The Landscape of Bangkok’s Agricultural Fringe and City Region Sustainability: An Ecological and Cultural Co-evolution. Sustainable Landscape Planning in Selected Urban Regions. Science for Sustainable Societies. Springer, Tokyo, Japan. doi:10.1007/978-4-431-56445-4_10.

Köppen, W. (1931). Basics of climatology. Walter de Gruyter. Berlin, Germany. (In German).

Valor, E., & Caselles, V. (1996). Mapping land surface emissivity from NDVI: Application to European, African, and South American areas. Remote Sensing of Environment, 57(3), 167–184. doi:10.1016/0034-4257(96)00039-9.

Nguyen, Q. K., Trinh, L. H., Dao, K. H., & Dang, N. D. (2019). Land Surface Temperature Dynamics in Dry Season 2015-2016 According to Landsat 8 Data in the South-East Region of Vietnam. Geography, Environment, Sustainability, 12(1), 75–87. doi:10.24057/2071-9388-2018-06.

Zareie, S., Khosravi, H., Nasiri, A., & Dastorani, M. (2016). Using Landsat Thematic Mapper (TM) sensor to detect change in land surface temperature in relation to land use change in Yazd, Iran. Solid Earth, 7(6), 1551–1564. doi:10.5194/se-7-1551-2016.

Thirumalai, K., DInezio, P. N., Okumura, Y., & Deser, C. (2017). Extreme temperatures in Southeast Asia caused by El Ninõ and worsened by global warming. Nature Communications, 8(1), 1–8. doi:10.1038/ncomms15531.

Doi, R. (2020). Assessing the reforestation effects of plantation plots in the Thai savanna based on 45 cm resolution true-color images and machine learning. Environmental Research Letters, 16(1), 14030. doi:10.1088/1748-9326/abcfe3.

Degefu, M. A., Argaw, M., Feyisa, G. L., & Degefa, S. (2022). Regional and urban heat island studies in megacities: A systematic analysis of research methodology. Indoor and Built Environment, 1420326X2110614. doi:10.1177/1420326x211061491.

Gaffin, S. R., Imhoff, M., Rosenzweig, C., Khanbilvardi, R., Pasqualini, A., Kong, A. Y. Y., … Hartung, E. (2012). Bright is the new black—multi-year performance of high-albedo roofs in an urban climate. Environmental Research Letters, 7(1), 014029. doi:10.1088/1748-9326/7/1/014029.

Miller, W. A. (2005). Steep-Slope Assembly Testing of Clay and Concrete Tile With and Without Cool Pigmented Colors. Lawrence Berkeley National Laboratory, California, United States. doi:10.2172/981415.

Ibrahim, S. H., Ibrahim, N. I. A., Wahid, J., Goh, N. A., Koesmeri, D. R. A., & Nawi, M. N. M. (2018). The impact of road pavement on urban heat island (UHI) phenomenon. International Journal of Technology, 9(8), 1597–1608. doi:10.14716/ijtech.v9i8.2755.

Adhikari, S., Mithulananthan, N., Dutta, A., & Mathias, A. J. (2008). Potential of sustainable energy technologies under CDM in Thailand: Opportunities and barriers. Renewable Energy, 33(9), 2122–2133. doi:10.1016/j.renene.2007.12.017.

Miranda, N. D., Renaldi, R., Khosla, R., & McCulloch, M. D. (2021). Bibliometric analysis and landscape of actors in passive cooling research. Renewable and Sustainable Energy Reviews, 149, 111406. doi:10.1016/j.rser.2021.111406.

Al Yacouby, A., Khamidi, M. F., Nuruddin, M. F., Idrus, A., Farhan, S. A., & Razali, A. E. (2011). A review on thermal performance of roofing materials in Malaysia. 351-358, International building & Infrastructure Technology Conference, 7-8 June, 2011, Penang, Malaysia.

Berdahl, P., Akbari, H., Levinson, R., & Miller, W. A. (2008). Weathering of roofing materials - An overview. Construction and Building Materials, 22(4), 423–433. doi:10.1016/j.conbuildmat.2006.10.015.

Sakarapunthip, N., Chenvidhya, D., Chuangchote, S., Kirtikara, K., Chenvidhya, T., & Onreabroy, W. (2017). Effects of dust accumulation and module cleaning on performance ratio of solar rooftop system and solar power plants. Japanese Journal of Applied Physics, 56(8), 08 02. doi:10.7567/JJAP.56.08ME02.

Adulkongkaew, T., Satapanajaru, T., Charoenhirunyingyos, S., & Singhirunnusorn, W. (2020). Effect of land cover composition and building configuration on land surface temperature in an urban-sprawl city, case study in Bangkok Metropolitan Area, Thailand. Heliyon, 6(8), 4485. doi:10.1016/j.heliyon.2020.e04485.

Mastrapostoli, E., Santamouris, M., Kolokotsa, D., Vassilis, P., Venieri, D., & Gompakis, K. (2016). On the ageing of cool roofs: Measure of the optical degradation, chemical and biological analysis and assessment of the energy impact. Energy and Buildings, 114, 191–199. doi:10.1016/j.enbuild.2015.05.030.

Hulley, G. C., Ghent, D., Göttsche, F. M., Guillevic, P. C., Mildrexler, D. J., & Coll, C. (2019). Land Surface Temperature. Taking the Temperature of the Earth, 57–127, Elsevier, Amsterdam, Netherlands. doi:10.1016/b978-0-12-814458-9.00003-4.

Zhang, P., Bounoua, L., Imhoff, M. L., Wolfe, R. E., & Thome, K. (2014). Comparison of MODIS Land Surface Temperature and Air Temperature over the Continental USA Meteorological Stations. Canadian Journal of Remote Sensing, 40(2), 110–122. doi:10.1080/07038992.2014.935934.

Mutiibwa, D., Strachan, S., & Albright, T. (2015). Land Surface Temperature and Surface Air Temperature in Complex Terrain. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 8(10), 4762–4774. doi:10.1109/JSTARS.2015.2468594.

Sagris, V., & Sepp, M. (2017). Landsat-8 TIRS Data for Assessing Urban Heat Island Effect and Its Impact on Human Health. IEEE Geoscience and Remote Sensing Letters, 14(12), 2385–2389. doi:10.1109/LGRS.2017.2765703.


Full Text: PDF

DOI: 10.28991/ESJ-2022-06-06-08

Refbacks

  • There are currently no refbacks.


Copyright (c) 2022 Ryoichi DOI