The Effect of Zeolite/Chitosan Hybrid Matrix for Thermal-stabilization Enhancement on the Immobilization of Aspergillus fumigatus α-Amylase

Yandri Yandri, Hendri Ropingi, Tati Suhartati, John Hendri, Bambang Irawan, Sutopo Hadi

Abstract


In this paper, the A. fumigatus α-amylase had been immobilized onto zeolite/chitosan hybrid to improve its thermal-stabilization for industrial needs. The methods applied enzyme production, isolation, partial purification, immobilization, and characterization. The optimum temperatures of the native and immobilized enzymes were 50 and 55˚C, respectively. The native enzyme has KM of 3.478 ± 0.271 mg mL-1 substrate and Vmax of 2.211± 0.096 µmole mL-1 min-1, while the immobilized enzyme has KM value of 12.051 ± 4.949 mg mL-1 substrate and Vmax of 1.602 ± 0.576 µmole mL-1 min-1. The residual activity of the immobilized enzyme retained up 10.97% after fifth reuse cycles. The native enzyme has ΔGi of 104.35 ± 1.09 kJ mole-1 and t½ of 38.75 ± 1.53 min, while the immobilized enzyme has ΔGi of 108.03 ± 0.05 kJ mole-1 and t½ of 180.03 ± 3.31 min. According to the increase in half-life (t½), stability improvement of the A. fumigatusα-amylase was 4.65 times greater than the native enzyme. Thus, the zeolite/chitosan hybrid is used as a new supporting matrix for further enzyme immobilization to stabilize the enzymes.

 

Doi: 10.28991/ESJ-2022-06-03-06

Full Text: PDF


Keywords


Enzyme Immobilization; α-Amylase; Aspergillus fumigatus; Zeolite/Chitosan Hybrid.

References


Ermis, E. (2017). Halal status of enzymes used in food industry. Trends in Food Science and Technology, 64, 69–73. doi:10.1016/j.tifs.2017.04.008.

Chapman, J., Ismail, A. E., & Dinu, C. Z. (2018). Industrial applications of enzymes: Recent advances, techniques, and outlooks. Catalysts, 8(6), 20–29. doi:10.3390/catal8060238.

Veerana, M., Mitra, S., Ki, S. H., Kim, S. M., Choi, E. H., Lee, T., & Park, G. (2020). Plasma-mediated enhancement of enzyme secretion in Aspergillus oryzae. Microbial Biotechnology, 14(1), 262–276. doi:10.1111/1751-7915.13696.

Thatoi, H., Mohapatra, P. K. D., Mohapatra, S., & Mondal, K. C. (2020). Microbial Fermentation and Enzyme Technology. CRC Press, Florida, United States. doi:10.1201/9780429061257.

Grand View Research. (2021). Enzymes Market Size, Share & Trends Analysis Report By Type (Industrial, Specialty), By Product (Carbohydrase, Proteases), By Source (Microorganisms, Animals), By Region, and Segment Forecasts, 2021-2028. Available online: https://www.grandviewresearch.com/industry-analysis/enzymes-industry/ (accessed on January 2022).

Vogel, A., & May, O. (Eds.). (2019). Industrial enzyme applications. John Wiley & Sons, New Jersey, United States. doi:10.1002/9783527813780.

Basso, A., & Serban, S. (2019). Industrial applications of immobilized enzymes—A review. Molecular Catalysis, 479(110607), 1–20. doi:10.1016/j.mcat.2019.110607.

Singh, R. S., Singhania, R. R., Pandey, A., & Larroche, C. (2019). Biomass, biofuels, biochemicals: advances in enzyme technology. Elsevier, Amsterdam, Netherlands. doi:10.1016/C2019-0-00323-8.

Salem, K., Elgharbi, F., Ben Hlima, H., Perduca, M., Sayari, A., & Hmida-Sayari, A. (2020). Biochemical characterization and structural insights into the high substrate affinity of a dimeric and Ca2+ independent Bacillus subtilis α-amylase. Biotechnology Progress, 36(4), 1–14. doi:10.1002/btpr.2964.

Sharma, M., Sharma, V., & Majumdar, D. K. (2014). Entrapment of α-Amylase in Agar Beads for Biocatalysis of Macromolecular Substrate. International Scholarly Research Notices, 2014, 1–8. doi:10.1155/2014/936129.

Van De Veerdonk, F. L., Gresnigt, M. S., Romani, L., Netea, M. G., & Latgé, J. P. (2017). Aspergillus fumigatus morphology and dynamic host interactions. Nature Reviews Microbiology, 15(11), 661–674. doi:10.1038/nrmicro.2017.90.

Guisan, J. M., Bolivar, J. M., López-Gallego, F., & Rocha-Martín, J. (2020). Immobilization of enzymes and cells: Methods and protocols. Humana Press, New Jersey, United States. doi:10.1007/978-1-0716-0215-7.

Zdarta, J., Meyer, A. S., Jesionowski, T., & Pinelo, M. (2018). A general overview of support materials for enzyme immobilization: Characteristics, properties, practical utility. Catalysts, 8(2), 1–27. doi:10.3390/catal8020092.

Mohamad, N. R., Marzuki, N. H. C., Buang, N. A., Huyop, F., & Wahab, R. A. (2015). An overview of technologies for immobilization of enzymes and surface analysis techniques for immobilized enzymes. Biotechnology and Biotechnological Equipment, 29(2), 205–220. doi:10.1080/13102818.2015.1008192.

Robinson, P. K. (2015). Enzymes: principles and biotechnological applications. Essays in Biochemistry, 59, 1–41. doi:10.1042/BSE0590001.

Datta, S., Christena, L. R., & Rajaram, Y. R. S. (2013). Enzyme immobilization: an overview on techniques and support materials. 3 Biotech, 3(1), 1–9. doi:10.1007/s13205-012-0071-7.

Talebi, M., Vaezifar, S., Jafary, F., Fazilati, M., & Motamedi, S. (2016). Stability improvement of immobilized α-amylase using nano pore zeolite. Iranian Journal of Biotechnology, 14(1), 33–38. doi:10.15171/ijb.1261.

Younes, I., & Rinaudo, M. (2015). Chitin and chitosan preparation from marine sources. Structure, properties and applications. Marine Drugs, 13(3), 1133–1174. doi:10.3390/md13031133.

Perez, J. J., Villanueva, M. E., Sánchez, L., Ollier, R., Alvarez, V., & Copello, G. J. (2020). Low cost and regenerable composites based on chitin/bentonite for the adsorption potential emerging pollutants. Applied Clay Science, 194, 1–7. doi:10.1016/j.clay.2020.105703.

Yandri, Y., Tiarsa, E. R., Suhartati, T., Satria, H., Irawan, B., & Hadi, S. (2022). The Stability Improvement of α -Amylase Enzyme from Aspergillus fumigatus by Immobilization on a Bentonite Matrix. Biochemistry Research International, 2022, 1–7. doi:10.1155/2022/3797629.

Tiarsa, E. R., Yandri, Y., Suhartati, T., Satria, H., Irawan, B., & Hadi, S. (2022). The Stability Improvement of Aspergillus fumigatus α-Amylase by Immobilization onto Chitin-Bentonite Hybrid. Biochemistry Research International, 2022, 1–9. doi:10.1155/2022/5692438.

Zdarta, J., Jędrzak, A., Klapiszewski, Ł., & Jesionowski, T. (2017). Immobilization of cellulase on a functional inorganic–organic hybrid support: Stability and kinetic study. Catalysts, 7(12), 1–7. doi:10.3390/catal7120374.

Tegl, G., Stagl, V., Mensah, A., Huber, D., Somitsch, W., Grosse-Kracht, S., & Guebitz, G. M. (2018). The chemo enzymatic functionalization of chitosan zeolite particles provides antioxidant and antimicrobial properties. Engineering in Life Sciences, 18(5), 334–340. doi:10.1002/elsc.201700120.

Baysal, Z., Bulut, Y., Yavuz, M., & Aytekin, C. (2014). Immobilization of α-amylase via adsorption onto bentonite/ chitosan composite: Determination of equilibrium, kinetics and thermodynamic parameters. Starch/Staerke, 66(5–6), 484–490. doi:10.1002/star.201300133.

Wahab, R. A., Elias, N., Abdullah, F., & Ghoshal, S. K. (2020). On the taught new tricks of enzymes immobilization: An all-inclusive overview. Reactive and Functional Polymers, 152, 1–26. doi:10.1016/j.reactfunctpolym.2020.104613.

Dwevedi, A. (2016). Enzyme Immobilization: Advances in Industry, Agriculture, Medicine, and the Environment. doi:10.1007/978-3-319-41418-8.

Bollag, D. M., Rozycki, M. D., & Edelstein, S. J. (1996). Protein methods (2nd Edition). WILEY-Liss, Hoboken, United States.

Fuwa, H. (1954). A new method for microdetermination of amylase activity by the use of amylose as the substrate. Journal of Biochemistry, 41(5), 583–603. doi:10.1093/oxfordjournals.jbchem.a126476.

Eveleigh, D. E., Mandels, M., Andreotti, R., & Roche, C. (2009). Measurement of saccharifying cellulase. Biotechnology for Biofuels, 2(1), 1-8. doi:10.1186/1754-6834-2-21.

Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. The Journal of Biological Chemistry, 193(1), 265–275. doi:10.1016/s0021-9258(19)52451-6.

Marotta, A., Luzzi, E., De Luna, M. S., Aprea, P., Ambrogi, V., & Filippone, G. (2021). Chitosan/zeolite composite aerogels for a fast and effective removal of both anionic and cationic dyes from water. Polymers, 13(11), 1–11. doi:10.3390/polym13111691.

Wang, W., Jiang, Y., Zhou, L., & Gao, J. (2011). Comparison of the properties of lipase immobilized onto mesoporous resins by different methods. Applied Biochemistry and Biotechnology, 164(5), 561–572. doi:10.1007/s12010-010-9157-z.

Ahmed, N. E., El Shamy, A. R., & Awad, H. M. (2020). Optimization and immobilization of amylase produced by Aspergillus terreus using pomegranate peel waste. Bulletin of the National Research Centre, 44(1), 1–12. doi:10.1186/s42269-020-00363-3.

Yang, Z., Domach, M., Auger, R., Yang, F. X., & Russell, A. J. (1996). Polyethylene glycol-induced stabilization of subtilisin. Enzyme and Microbial Technology, 18(2), 82–89. doi:10.1016/0141-0229(95)00073-9.

Kazan, D., Ertan, H., & Erarslan, A. (1997). Stabilization of Escherichia coli penicillin G acylase against thermal inactivation by cross-linking with dextran dialdehyde polymers. Applied Microbiology and Biotechnology, 48(2), 191–197. doi:10.1007/s002530051037.

Yandri, Suhartati, T., Yuwono, S. D., Qudus, H. I., Tiarsa, E. R., & Hadi, S. (2018). Immobilization of a-amylase from Bacillus subtilis ITBCCB148 using bentonit. Asian Journal of Microbiology, Biotechnology and Environmental Sciences, 20(2), 487–492.

Ezzeddine, Z., Batonneau-Gener, I., Pouilloux, Y., Hamad, H., & Saad, Z. (2018). Synthetic nax zeolite as a very efficient heavy metals sorbent in batch and dynamic conditions. Colloids and Interfaces, 2(2), 1–14. doi:10.3390/colloids2020022.

Wang, P., Sun, Q., Zhang, Y., & Cao, J. (2019). Synthesis of zeolite 4A from kaolin and its adsorption equilibrium of carbon dioxide. Materials, 12(9), 1–12. doi:10.3390/ma12091536.

Cheng, Z. L., Li, Y. X., & Liu, Z. (2017). Novel adsorption materials based on graphene oxide/Beta zeolite composite materials and their adsorption performance for rhodamine B. Journal of Alloys and Compounds, 708, 255–263. doi:10.1016/j.jallcom.2017.03.004.

de Matos Degues, K., Cypriano, M. G., Coelho, K. B., Luza, A. L., Montedo, O. R. K., de Castro, L. C., & Angioletto, E. (2018). Assessment of PCM-impregnated zeolite as a matrix for latent heat storage. Materials Science Forum, 912 MSF, 87–92. doi:10.4028/www.scientific.net/MSF.912.87.

Zvezdova, D. (2010). Synthesis and characterization of chitosan from marine sources in Black Sea. Annual Proceedings," Angel Kanchev" University of Ruse, Ruse, Bulgaria 49(9.1), 65-69.

Ahmad, M. Bin, Tay, M. Y., Shameli, K., Hussein, M. Z., & Lim, J. J. (2011). Green synthesis and characterization of silver/chitosan/polyethylene glycol nanocomposites without any reducing agent. International Journal of Molecular Sciences, 12(8), 4872–4884. doi:10.3390/ijms12084872.

Ammar, H. O., El-Nahhas, S. A., Ghorab, M. M., & Salama, A. H. (2012). Chitosan/cyclodextrin nanoparticles as drug delivery system. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 72(1–2), 127–136. doi:10.1007/s10847-011-9950-5.

Chen, C., Gao, Z., Qiu, X., & Hu, S. (2013). Enhancement of the controlled-release properties of chitosan membranes by crosslinking with suberoyl chloride. Molecules, 18(6), 7239–7252. doi:10.3390/molecules18067239.

Lopez-Carrizales, M., Mendoza-Mendoza, E., Peralta-Rodriguez, R. D., Pérez-Díaz, M. A., Portales-Pérez, D., Magaña-Aquino, M., … Martinez-Gutierrez, F. (2020). Characterization, antibiofilm and biocompatibility properties of chitosan hydrogels loaded with silver nanoparticles and ampicillin: an alternative protection to central venous catheters. Colloids and Surfaces B: Biointerfaces, 196, 111292. doi:10.1016/j.colsurfb.2020.111292.

Menazea, A. A., Eid, M. M., & Ahmed, M. K. (2020). Synthesis, characterization, and evaluation of antimicrobial activity of novel Chitosan/Tigecycline composite. International Journal of Biological Macromolecules, 147, 194–199. doi:10.1016/j.ijbiomac.2020.01.041.

Vegere, K., Kravcevica, R., Krauklis, A. E., & Juhna, T. (2020). Comparative study of hydrothermal synthesis routes of zeolite A. Materials Today: Proceedings, 33, 1984–1987. doi:10.1016/j.matpr.2020.06.326.

Mostafa, M., El-Meligy, M. A., Sharaf, M., Soliman, A. T., & AbuKhadra, M. R. (2021). Insight into chitosan/zeolite-A nanocomposite as an advanced carrier for levofloxacin and its anti-inflammatory properties; loading, release, and anti-inflammatory studies. International Journal of Biological Macromolecules, 179, 206–216. doi:10.1016/j.ijbiomac.2021.02.201.

Manasi, Rajesh, V., & Rajesh, N. (2015). An indigenous Halomonas BVR1 strain immobilized in crosslinked chitosan for adsorption of lead and cadmium. International Journal of Biological Macromolecules, 79, 300–308. doi:10.1016/j.ijbiomac.2015.04.071.

Fernandez-Lafuente, R. (2009). Stabilization of multimeric enzymes: Strategies to prevent subunit dissociation. Enzyme and Microbial Technology, 45(6–7), 405–418. doi:10.1016/j.enzmictec.2009.08.009.

Klapiszewski, Ł., Zdarta, J., & Jesionowski, T. (2018). Titania/lignin hybrid materials as a novel support for α-amylase immobilization: A comprehensive study. Colloids and Surfaces B: Biointerfaces, 162, 90–97. doi:10.1016/j.colsurfb.2017.11.045.

Yandri, Y., Suhartati, T., Satria, H., Widyasmara, A., & Hadi, S. (2020). Increasing Stability of a-amylase Obtained from Bacillus subtilis ITBCCB148 by Immobilization with Chitosan. Mediterranean Journal of Chemistry, 10(2), 155–161. doi:10.13171/mjc10202002131126ysh.

Mohammadi, M., Khakbaz Heshmati, M., Sarabandi, K., Fathi, M., Lim, L. T., & Hamishehkar, H. (2019). Activated alginate-montmorillonite beads as an efficient carrier for pectinase immobilization. International Journal of Biological Macromolecules, 137, 253–260. doi:10.1016/j.ijbiomac.2019.06.236.

Califano, V., & Costantini, A. (2020). Immobilization of cellulolytic enzymes in mesostructured silica materials. Catalysts, 10(6), 1–31. doi:10.3390/catal10060706.

Wu, L., Wu, S., Xu, Z., Qiu, Y., Li, S., & Xu, H. (2016). Modified nanoporous titanium dioxide as a novel carrier for enzyme immobilization. Biosensors and Bioelectronics, 80, 59–66. doi:10.1016/j.bios.2016.01.045.

Taghizadeh, T., Ameri, A., Talebian-Kiakalaieh, A., Mojtabavi, S., Ameri, A., Forootanfar, H., Tarighi, S., & Faramarzi, M. A. (2021). Lipase@zeolitic imidazolate framework ZIF-90: A highly stable and recyclable biocatalyst for the synthesis of fruity banana flavour. International Journal of Biological Macromolecules, 166, 1301–1311. doi:10.1016/j.ijbiomac.2020.11.011.

Yu, L., Yu, B., Chen, H., Shang, X., He, M., Lin, M., Li, D., Zhang, W., Kang, Z., Li, J., Wang, F., Xiao, L., Wang, Q., & Fan, J. (2021). Highly efficient artificial blood coagulation shortcut confined on Ca-zeolite surface. Nano Research, 14(9), 3309–3318. doi:10.1007/s12274-021-3394-z.

A. Modenez, I., Sastre, D., C. Moraes, F., & Marques Netto, C. (2018). Influence of Glutaraldehyde Cross-Linking Modes on the Recyclability of Immobilized Lipase B from Candida antarctica for Transesterification of Soy Bean Oil. Molecules, 23(9), 2230. doi:10.3390/molecules23092230.

Ribeiro, E. S., de Farias, B. S., Sant’Anna Cadaval Junior, T. R., de Almeida Pinto, L. A., & Diaz, P. S. (2021). Chitosan–based nanofibers for enzyme immobilization. International Journal of Biological Macromolecules, 183, 1959–1970. doi:10.1016/j.ijbiomac.2021.05.214.


Full Text: PDF

DOI: 10.28991/ESJ-2022-06-03-06

Refbacks

  • There are currently no refbacks.


Copyright (c) 2022 Yandri Yandri, Hendri Ropingi, Tati Suhartati, John Hendri, Bambang Irawan, Sutopo Hadi