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Abstract 

The object of this study is fuzzy cognitive modeling as a means of studying semistructured socio-
economic systems. The features of constructing cognitive maps, providing the ability to choose 

management decisions in complex semistructured socio-economic systems, are described. It is 

shown that further improvement of technologies necessary for developing decision support systems 
and their practical use is still relevant. This work aimed to improve the accuracy of cognitive 

modeling of semistructured systems based on a fuzzy cognitive map of structuring nonformalized 

situations (MSNS) with the evaluation of root-mean-square error (RMSE) and mean average squared 
error (MASE) coefficients. In order to achieve the goal, the following main methods were used: 

systems analysis methods, fuzzy logic and fuzzy sets theory postulates, theory of integral wavelet 

transform, correlation and autocorrelation analyses. As a result, a new methodology for constructing 
MSNS was proposed—a map of structuring nonformalized situations that combines the positive 

properties of previous fuzzy cognitive maps. The solution of modeling problems based on this 

methodology should increase the reliability and quality of analysis and modeling of semistructured 
systems and processes under uncertainty. The analysis using open datasets proved that compared to 

the classical ARIMA, SVR, MLP, and Fuzzy time series models, our proposed model provides better 

performance in terms of MASE and RMSE metrics, which confirms its advantage. Thus, it is 
advisable to use our proposed algorithm in the future as a mathematical basis for developing software 

tools for the analysis and modeling of problems in semistructured systems and processes. 
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1- Introduction 

With the growth of human needs, many theoretical and applied tasks are solved using computer technology and 

various information systems, including automated DSS [1-3]. The difficulties of solving the arising problems are related 

not only to the need to perform a huge number of procedures, which should be done as quickly and qualitatively as 

possible, but also to the fact that the initial data requirements to solve them are variable and often have an uncertain, 

fuzzy nature. This problem is particularly acute in the medical subject area [4-6], where the uncertainty of responsible 

decisions may be related to a number of the following circumstances: 

 Problems of complete collection and recording of information about impacts affecting the medical situation in 

question [7]; 

 Possible inaccuracy of the results of medical analyses; 

 The inability to engage competent expert physicians in sparsely populated hard-to-reach areas or case of 

emergencies; 

 The manifestation of subjective human factors; 
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 Inconsistencies in the treatment policies proposed by subject matter experts in multifactorial comorbid cases; 

 In the course of scientific progress, modern medicine is mastering computerized DSS. However, many barriers 

prevent their mass introduction [8, 9]: 

 The problems associated with the enormous amount of accumulated medical knowledge and technology, as well 

as their constant updating;  

 The absence of open and updated banks of large impersonal clinical data available to researchers, verified by 

subject matter experts, and then normalized and, if necessary, generalized;  

 Insufficient data formalization and standardization; 

 The complexity of reasoning the decision-making methods recommended by the DSS. 

Attempts to overcome such barriers in solving design problems of automated DSS in medical and other subject areas 

lead to new methodological approaches and modeling methods. 

In the study of complex systems, as a rule, it is not possible to build a reliable mathematical model because of the 

large uncertainty in the interaction of system elements. Consequently, approaches using the application of specially 

developed decision support mechanisms based on elements of the fuzzy set theory, algebra of logic, semantic networks, 

the theory of cognitive analysis, and others were developed [10-12]. One method of modeling an uncertain and dynamic 

environment is the cognitive approach. The essence of cognitive modeling, also called “cognitive structuring” is to assist 

the decision-maker. Cognitive structuring makes it possible to delve into the situation and develop the most appropriate 

decision, relying not on intuitive choice but an ordered and verifiable knowledge of the subject area under study. 

The basis of a wide range of developed cognitive models is various types of cognitive maps of the subject area under 

study, a set of factors describing it (commonly called concepts), where a set of cause-and-effect relations is given. It is 

a particular scheme that helps to consider a particular problem in any sphere of life in more detail, thoroughly examining 

the relations between its components. Because of constructing a cognitive map, it is possible to look at the problem or 

situation from the outside, understand what and how to change, and where to go better [13, 14]. 

In solving many practical problems of cognitive modeling and analysis of dynamic semistructured systems, the 

method of fuzzy cognitive maps (FCM) has quite successfully established itself [15-17]. Nevertheless, further 

improvement of such technologies necessary for DSS development and their practical use remains relevant. In this 

regard, the purpose of this paper is to improve the accuracy of cognitive modeling of semistructured systems based on 

fuzzy cognitive MSNS with RMSE and MASE coefficient estimation. 

2- Literature Review 

The practical application specifics of cognitive modeling tools focus on analyzing certain scenarios in the subject area 

under consideration, considering its peculiarities. This analysis aims to detect contradictions and analyze observed events 

and qualitative comprehension of the problems in the subject area under study. The main stage of cognitive analysis in 

cognitive modeling is reduced to simplifying the representation of internal processes and trends of the system and its 

existing problems. Cognitive modeling aims to study possible ways of developing events and solving problems arising 

in simulated situations. Let us consider a few examples below. 

Chen and Chiu (2021) used the FCM method to illustrate the development opportunities of the Internet of Things 

industry in Taiwan [18]. The study combines expert opinions with learning algorithms and obtains a dynamic fuzzy 

model of the cognitive map to solve a multi-criteria analysis problem. FCMs work effectively in short-term forecasting 

and usually fail to justify themselves in long-term forecasting due to potentially complex interactions in the next steps. 

Feng et al. (2021) propose a robust conceptual method for long-run time series forecasting using FCM-algorithms [19]. 

The method efficiency is shown on both synthetic and real data. Babroudi et al. (2021) applied the FCM-algorithm in 

combination with Z-estimation of uncertainty to assess the causal relationship between the criteria of health care services 

in infectious disease outbreaks; the importance of effective criteria for their quality was evaluated concerning their 

interaction with each other [20]. 

Baykasoğlu and Gölcük (2021) propose computational methods based on alpha pruning for FCM modeling [21]. The 

described model is implemented in a real problem of selecting a third-party logistics service provider. Wang et al. (2021) 

describe an FCM method using a batch multitask evolutionary algorithm based on random inactivation that is effective 

on synthetic and real datasets in reconstructing the regulatory gene network [22]. Liu and Liu (2020) propose an 

ingenious time series prediction method based on FCM algorithms [23]. A prediction method based on empirical mode 

decomposition and high order fuzzy cognitive networks is applied. The increased ability for reliability growth and 

insensitivity to hyperparameters is demonstrated. Chen et al. (2020) consider the application of adaptive FCM for risk 

assessment in public-private partnership projects [24]. The proposed method can study random relationships based on 

observable data and assess risks associated with uncertainty, subjectivity, and complex interdependencies. Akinnuwesi 

et al. (2020) describe the FCM application for creating DSSs designed for the early diagnosis of rheumatoid diseases of 

the musculoskeletal system [25]. The method considers causal interactions between symptoms and risk factors and is 
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highly effective. Another study describes the use of a multi-layer FCM for the early diagnosis of autism spectrum 

disorders. The model has demonstrated its effectiveness on real diagnostic datasets and improved accuracy compared to 

traditional FCMs [26]. 

Thus, the cognitive analysis uses many approaches with different methodological schemes based on the peculiarities 

of the object (or objects) and subject area under study. Information analysis suggests an important area of research in 

this subject area is the study of possible approaches to improving accuracy, such as using new methods for decomposition 

of time series of data and signals in combination with FCM. Generalization and unification of existing approaches allow 

us to distinguish seven key stages inherent in the cognitive analysis process in most cases where any of them is 

responsible for solving a strictly definite task. The key goal achievement of cognitive analysis happens during a 

sequential realization of all these stages. Thus, the process of cognitive analysis may be represented in a generalized 

form as an algorithm with the stage-by-stage implementation of the following procedures: 

 Formulating the goal and identifying the objectives of cognitive analysis. At this stage, the research object is 

studied, and the subject area is analyzed. 

 Conducting the situation analysis for this goal. At this stage, it is necessary to collect as much complete information 

as possible. The most important data is systematized and analyzed, taking into account the subject area.  

Requirements, restrictions, and conditions for a particular situation are established. 

 Cognitive modeling (initial stage) – establishing the key concepts on which the development of the situation 

depends. At this stage, concepts of a studied situation should be revealed and analyzed. 

 Cognitive modeling – establishing the interrelationship of concepts. Causal relationships are analyzed at this stage, 

and a cognitive map is constructed in a functional graph. 

 Cognitive modeling (final stage) – establishing the impact of various concepts on each other. At this stage, 

mathematical models are constructed for formalizable dependencies. For not formalizable qualitative relations 

between concepts, the expert's subjective opinion is used. 

 Verification of the cognitive model. At this stage, the correspondence of the created model to the observed situation 

from the investigated subject area is evaluated. 

 The resulting model testing and setting. At this stage, mechanisms and ways to ensure the necessary results in 

response to the situation and exclude adverse consequences are established. A management strategy is selected. 

Forces that drive trends are set, and target directions of the situation development are defined. 

Cognitive modeling of the situation is implemented within stages 3, 4, and 5. The cognitive modeling result is 

presented as an oriented graph with vertices, which are factors (concepts). The arcs linking the graph vertices are 

interpreted as direct causal relationships (or impacts) between the factors. Thus, an essential foundation of the entire 

family of cognitive analysis models is constructing an oriented graph, a cognitive map describing how concepts depend 

on each other. Traditional cognitive maps contain relationships that take one of three possible values from the set {-1, 0, 

+1}. A relationship value of +1 and –1 between two concepts indicates the first concept's positive and negative influence 

on the second one. Zero indicates the absence of connecting relations between the concepts. In this case, the cognitive 

map does not indicate the relationship. 

FCMs, unlike traditional maps, represent the fuzzy-oriented graph with feedback. Its nodes are fuzzy sets, and directed 

edges of FCMs reflect causal relationships between concepts and determine the degree of influence (weight) of related 

concepts. 

In a generalized form, within algorithms for FCM construction, such procedures are performed in stages as follows: 

 Definition of the list of concepts that are significant for a given subject area, then for each concept, it is necessary 

to define a level scale on which the concept values will be set; 

 Definition of causal (influence) relationships between each pair of concepts; 

 Determining the sign of influence (positive or negative) between each pair of concepts related by a causal 

relationship; 

 Determining the power of influence between each pair of concepts related by a causal relationship; 

 Determining the initial state of the concepts; 

 Determining the external influences on the concepts. 

Traditional cognitive maps can be used only in problems where it is necessary to assess the impact of particular 

concepts on the entire system's stability. The impossibility of numerical modeling of the behavior of systems described 

by simple cognitive maps leads to the limitation of their application in solving practical problems. At the same time, the 

sphere of FCM practical application created with the use of various methodological approaches, on the contrary, 

noticeably expands. This expansion is associated with their ability to provide the flexibility of the subject area 

representation, the possibility of abstract interpretation of causal relationships between concepts, and using elements of 
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fuzzy logic – so-called judgments. Currently, the mathematical apparatus oriented to the application of FCM is well 

developed. There are many algorithms for the construction and functioning of such maps, such as FCMs proposed by 

Kosko (1986) [27], the differential Hebbian algorithm [28], balanced differential algorithm, generalized FCMs [29], 

fuzzy production cognitive maps, fuzzy cognitive approach to dynamic system management, an algorithm based on the 

coordinated processing of expert and statistical information, and others. 

The most common are Mamdani fuzzy production cognitive map (FPCM) models, in which both input and output 

have information given by the values of linguistic variables. The transfer of mutual influence between concepts is based 

on Mamdani's fuzzy inference method, where fuzzy sets condition the values of input and output variables. In order to 

reveal the influence of a group of input concepts on the output concept in FPCM, a special kind of operation "fuzzy 

accumulation with transfer" is used, which essence is the following: influences from two input concepts, defined by 

fuzzy sets, are represented by the membership function of the output concept. The membership function "moves" in the 

basic set to the area of larger values from smaller values until it reaches maximums and discretizes. Then the obtained 

membership values are summed up in a sequence starting from the smallest one. The sum of more than one is summed 

with the next point value. 

In FPCM, unlike other types of cognitive maps, both "fuzzy coordinates" are implemented. However, the 

disadvantages of FPCM can be attributed to the fact that this mechanism itself is implemented quite arbitrarily, and there 

is no possibility to describe it explicitly. Different approaches (in FCM development) to define arcs, vertices, weights 

on arcs, and different defining functions between the factors periodically generate different modifications of cognitive 

map-based models and formal and mathematical apparatus changes for their analysis. A possible modification of the 

FCM is proposed in this paper for MSNS. 

3- Methodology 

A flowchart illustrating our proposed methodology is shown in Figure 1. 

 

Figure 1. Flowchart of the proposed methodology 
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3-1- Map of Structuring Nonformalized Situations (MSNS) 

A comprehensive opportunity analysis of existing methods of FCM construction made it possible to formulate some 

requirements whose implementation should be ensured within the development of the MSNS method. 

1. In analyzing and constructing MSNS, it is necessary to maximize the mathematical apparatus of the fuzzy sets 

theory in the developed map. All the objects (fuzzy concepts and mapping the influence) included in MSNS and 

all actions performed with them (considering the influence of several concepts, dynamic modeling) should be 

fuzzy. 

2. Fuzzy relations between concepts (mutual influence of concepts) should be represented by a fuzzy mapping of an 

input concept on an output concept. A fuzzy set of values represents these concepts. Influences may also be 

represented by functions that will be clear. 

3. Fuzzy concepts describing objects of the subject area should be represented quantitatively, i.e., be formalized. It 

is possible to represent them as clear values, single-point belongings, or fuzzy sets within the modeled system. 

4. It is necessary to implement dynamic models in the map to consider the system behavior, which will change under 

the mutual influence of the concepts and be non-linear. 

5. In MSNS, it is necessary to consider opposite vectors of weights of mutual influence of concepts and accumulation 

of such influence and implement a mechanism that would simultaneously consider positive and negative 

influences of concepts and represent them both as fuzzy membership functions and simple values. 

6. It is necessary to develop an algorithm for training MSNS on a sample of reference scenarios. 

7. The accumulation of mutual influence of concepts should be implemented by a separate procedure with a 

cumulative, additive character to consider influences with even the smallest values. 

8. The property of associativity and commutativity should be respected in this procedure of mutual influence 

accumulation of concepts. Its operation should not be affected by the consistency of individual factors in the 

subject area. 

9. It is necessary to separately consider the input and output concepts and mark them when constructing MSNS. 

10. For proper consideration in MSNS, it is necessary to move the fuzzy membership function in the basic set to 

larger values from smaller values and consider it in the mutual influence accumulation of concepts. The algorithm 

should permit the training of MSNS relationship weights using the generated training sample. The proposed 

MSNS results from the formalization of a fuzzy cognitive model based on formalizing causal relationships 

between multiple factors (concepts) characterizing the system under study. The proposed MSNS structure based 

on these requirements is shown in Figure 2. 

 

Figure 2. MSNS Structure 
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All designations of variables and relationships indicated in Figure 2 are presented in the text of the article below. We 

consider MSNS as a fuzzy network of mutual influence of concepts as follows (1): 

𝑀𝑆𝑁𝑆 = (𝐶, 𝑈)  (1) 

where С is the set of concepts defined by the tuple (2): 

𝐶 = {𝐶𝑖} 𝑎𝑡 (𝑖 = 1,2, … , 𝑛) (2) 

where п is power of a set of concepts; U is the set of relationships between concepts (3) 

𝑈 = {𝑢𝑖𝑗} 𝑎𝑡 (𝑗 = 1,2, … , 𝑛) (3) 

A cognitive map is a causal network reflecting some area of knowledge through the nodes and arcs of the semantic 

network of the subject area, which determines the proximity of the theoretical aspects of MSNS and semantic networks 

construction. Each particular concept 𝐶𝑖 may be represented by 𝐿𝑃𝑐𝑖-the linguistic variable defined by the following set 

(4): 

𝐿𝑃𝑐𝑖 = 〈𝐶𝑖̃, 𝐿𝑐𝑖 , 𝑃𝑐𝑖〉 (4) 

where Pci is base term set 𝐶𝑖̃; 𝐿𝑐𝑖 is the list of linguistic values of the 𝑖-th concept of the subject area, which is given by 

the set of basic states characterizing it (5): 

𝐿𝑐𝑖 = {𝐿𝑐𝑘
𝑖 } 𝑎𝑡 (𝑘 = 1,2, … ,𝑚𝑖) (5) 

where mi is the number of base states of the i-th concept. Each set element 𝐿𝑐𝑘
𝑖  s its term that includes the basis (state) 

of the concept 𝐶𝑖 represented by a triple of fuzzy variable: 〈𝐿𝑐𝑖 , 𝑃𝑐𝑖 , 𝑆̃𝑐𝑘
𝑖 〉. 𝑆̃𝑐𝑘

𝑖  is a fuzzy set in the base set 𝑃𝑐𝑖, which 

an expression of the form may represent: 

𝑆̃𝑐𝑘
𝑖 = {𝑝, 𝜇

𝑆̃𝑐𝑘
𝑖 (𝑝)|𝑝 ∈ 𝑃𝑐𝑖} (6) 

Where 𝜇
𝑆̃𝑐𝑘
𝑖 (𝑝) is fuzzy membership function; p is element belonging to the base set 𝑃𝑐𝑖. The relationships between 

concepts (elements of the set 𝑈) determine the degree of influence between the subject area concepts. A specific value 

also determines them from the term set: 

𝐿𝑃𝑢𝑖𝑗 = 〈𝑈𝑖𝑗 , 𝐿𝑢𝑖𝑗 , 𝑃𝑢𝑖𝑗〉 (7) 

where Puij is base term set 𝑈𝑖𝑗; 𝐿𝑢𝑖𝑗 is list of linguistic values of the degree of relationship between the 𝑖-th and the 𝑗-th 

concepts of the subject area, which characterizes the set of its basic states and is given by the expression: 

𝐿𝑢𝑖𝑗 = {𝐿𝑢𝑘ℎ
𝑖𝑗
} 𝑎𝑡 (ℎ = 1,2, … ,𝑚𝑗) (8) 

where 𝑚𝑗 is the number of such states in the 𝑗-th concept; 𝑘 × ℎ is the number of values. Each set element 𝐿𝑢𝑘ℎ
𝑖𝑗

 is a term 

containing the basis (state) of influence weight 𝑈̃𝑖𝑗  between pairs of 𝑖-th and 𝑗-th MSNS concepts represented by a triple 

of fuzzy variables 〈𝐿𝑢𝑘ℎ
𝑖𝑗
, 𝑃𝑢𝑖𝑗 , 𝑆𝑢𝑘ℎ

𝑖𝑗 〉. 𝑆̃𝑢𝑘ℎ
𝑖𝑗

 is fuzzy set in the base set 𝑃𝑢𝑖𝑗 , which is written by an expression of the 

form: 

𝑆̃𝑢𝑘ℎ
𝑖𝑗
= {𝑝, 𝜇

𝑆̃𝑢𝑘ℎ
𝑖𝑗 (𝑝)|𝑝 ∈ 𝑃𝑢𝑖𝑗}  

where 𝜇
𝑆̃𝑢𝑘ℎ

𝑖𝑗 (𝑝) is fuzzy membership function, 𝑃𝑢𝑖𝑗  (𝑖 = 1. . 𝑛;  𝑗 = 1. . 𝑛); n is the power of the set of the subject area 

concepts. 

MSNS uses the same mechanism as FPCM algorithms for a combined view of positive and negative interrelationships 

of concepts and the accumulation of these influences. For this purpose, extending the base set of concept states and the 

set of interrelationship weights from negative values is necessary. Then it is necessary to apply the productive systems 

of the Mamdani type where the mutual influence transfer between concepts is based on fuzzy inference with the values 

of input and output variables conditioned by fuzzy sets. The Mamdani algorithm was used to obtain fuzzy inference 

according to the following scheme: 

⋃ (⋂ 𝑥𝑖 = 𝑎𝑖,𝑗𝑝 𝑤𝑖𝑡ℎ 𝑤𝑒𝑖𝑔ℎ𝑡 𝑢𝑗𝑝
𝑛
𝑖=1 ) → 𝑦 = 𝑑𝑗 ,   𝑗 = 1.𝑚̅̅ ̅̅ ̅̅

𝑘𝑗
𝑝=1   (10) 
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where fuzzy sets define the values of input and output concepts. Note that expression (10) is quite formal since it does 

not contain specific fuzzy rules for transitioning from input to output variables. Thus, it is necessary to introduce a rule 

base, denoting which membership functions of fuzzy variables are used. 

In practice, many different types of membership functions are used in the theory of fuzzy sets. Let us list some 

common types of membership functions with their advantages and disadvantages: 

 Piecewise linear (multiangular) membership functions that are not continuously differentiable; 

 Intuitive symmetric Gaussian function in which obtaining simple local linear response surfaces is difficult since 

unity partition conditions are violated; 

 Intuitive asymmetric Gaussian function which deprived of the mentioned disadvantages of the symmetric Gaussian 

function; 

 Sigmoidal membership function, which, unlike Gaussian functions, is suitable for representation of extreme sets; 

 High-order polynomial membership function which combines the possibility of a significant increase in accuracy 

with the high complexity of finding a large number of parameters required to define the membership function; 

 Harmonic membership function in which infinite differentiability simplifies obtaining smooth, continuously 

differentiable model response surfaces. 

Many conversion functions are available for the FCM. When the state values are in the range [-1, 1], it is necessary 

to use the hyperbolic tangent function (11): 

tanh(𝑥) =
𝑒𝑥+𝑒−𝑥

𝑒𝑥−𝑒−𝑥
  (11) 

According to Formula 11, FCMs can model only short-term temporal relationships, and the process of modeling long-

term temporal dependencies was proposed by Stach et al. (2006) [30] and is described as follows (12): 

𝐴𝑖(𝑡 + 1) = 𝑔[∑ 𝜔𝑖𝑗
1 𝐴𝑗(𝑡) + 𝜔𝑖𝑗

2 𝐴𝑗(𝑡 − 1)+,… , 𝜔𝑖𝑗
ℎ 𝐴𝑗(𝑡 − ℎ + 1) + 𝜔𝑖0

𝑁𝑐
𝑗=1 ]  (12) 

where 𝜔𝑖𝑗
ℎ  is the impact of node 𝑗 on node 𝑖 at time step (t-ℎ+1); 𝜔𝑖0 is displacement term. 

The choice of one or another function is largely determined by the available information about the modeled system 

and the quality of the available model adjustment procedures. At the same time, the analyzed information about the 

system may not be equivalent, so it also needs to be evaluated. For this purpose, an empirical wavelet transform (EWT) 

can be used, which analyzes the signal after a fast Fourier transform and implements spectrum separation by bandpass 

filtering using a special set of filters based on the nature of the data. This method of adaptive signal decomposition has 

high efficiency in analyzing nonstationary time series and signal processing; thus, it has an effective use [31-34]. The 

EWT uses the Littlewood-Paley and Meyer wavelets [35] because of the convenience of closed-form expression in the 

Fourier domain. Construction of these bandpass filters is expressed by Equations 13 and 14, in which the transition band 

is controlled by a transition zone parameter γ satisfying the condition 𝛾 ≤ 𝑚𝑖𝑛𝑛[(𝜔𝑛+1 −𝜔𝑛)/(𝜔𝑛+1 +𝜔𝑛)] to avoid 

spectrum overlapping [36]: 

∅̂𝑛(𝜔) =

{
 

 
1                                                                                          𝑖𝑓 |𝜔| ≤ (1 − 𝛾)𝜔𝑛

cos [
𝜋

2
𝛽 (

1

2𝛾𝜔𝑛
(|𝜔| − (1 − 𝛾)𝜔𝑛|))]  𝑖𝑓 (1 − 𝛾)𝜔𝑛 ≤ |𝜔| ≤ (1 + 𝛾)𝜔𝑛

0                                                                                                            𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  (13) 

𝛹̂𝑛(𝜔) =

{
  
 

  
 

1                                                                     𝑖𝑓 (1 + 𝛾)𝜔𝑛 ≤ |𝜔| ≤ (1 − 𝛾)𝜔𝑛+1

cos [
𝜋

2
𝛽 (

1

2𝛾𝜔𝑛
(|𝜔| − (1 − 𝛾)𝜔𝑛|))]         𝑖𝑓 (1 − 𝛾)𝜔𝑛+1 ≤ |𝜔| ≤ (1 + 𝛾)𝜔𝑛+1

sin [
𝜋

2
𝛽 (

1

2𝛾𝜔𝑛
(|𝜔| − (1 − 𝛾)𝜔𝑛|))]          𝑖𝑓 (1 − 𝛾)𝜔𝑛 ≤ |𝜔| ≤ (1 + 𝛾)𝜔𝑛          

0                                                                        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  (14) 

In Equations 13 and 14, the function β(𝑥) has the form (15) as a consequence of the fact that Equation 15 must be 

satisfied: 

𝛽(𝑥) = 𝑥4(35 − 84𝑥 + 70𝑥2 − 20𝑥3) (15) 

The graphical interpretation of Functions 13 and 14 is presented in Figure 3. The midpoints between frequencies are 

sorted by order and denoted as 𝜔𝑛(1 ≤ 𝑛 ≤ 𝑁). The set of constructed empirical scaling functions and wavelet 
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functions{∅1(𝑡), 𝛹𝑛(𝑡)𝑛=1
𝑁 }, according to functions 13 and 14, is identified as a rigid frame 𝐿2(ℝ) together with the 

coefficient 𝛾 ≤ 𝑚𝑖𝑛𝑛[(𝜔𝑛+1 − 𝜔𝑛)/(𝜔𝑛+1 + 𝜔𝑛)] resulting in Expression 16: 

∑ [|∅̂1(𝜔 + 2𝑘𝜋)|
2 + ∑ |𝛹̂((𝜔 + 2𝑘𝜋))|

2𝑁
𝑛=1 ]∞

𝑘=−∞ = 1  (16) 

 

Figure 3. Graphical Representation of Functions 13 and 14 

For the transition from the fuzzy set defined by the universal set of fuzzy terms (the universal set is this term-menu 

of the output concept y) to the fuzzy set defined on the interval, it is necessary to perform the steps listed below: 

1) "Constrain" the membership functions of the output concept; 

2) Perform the combining operation for the obtained fuzzy sets mathematically written through the aggregate 

operation of fuzzy sets: 

𝑦̃ = 𝑎 𝑔𝑔
𝑗=1,𝑚

(∫ 𝑚𝑖𝑛(𝜇𝑑𝑗(𝑋
∗), 𝜇𝑑𝑗(𝑦))

𝑦𝑖̅̅̅

𝑦𝑖
/𝑦)  (17) 

The aggregate operation is implemented using the operation of finding the maximum. For finding the exact value of 

the output concept y, defined according to the input vector 𝑋, which is the result of the fuzzy set defuzzification y, the 

center of gravity method is used: 

𝑦 = ∫ 𝑦. 𝜇𝑦̃(𝑦)𝑑𝑦
𝑦̅

𝑦
/ ∫ 𝜇𝑦̃(𝑦)𝑑𝑦

𝑦̅

𝑦
   (18) 

3-2- Dynamics of MSNS Changes 

Within the dynamic model implementation, MSNS should be considered, in contrast to (1), as a fuzzy network of 

mutual influence of concepts of the form: 

𝑀𝑆𝑁𝑆 = (𝐶, 𝑈, 𝐹𝑐, 𝐹) (19) 

where С, 𝑈 is elements defined earlier: (1) – (3); 𝐹𝑐 is a function of the activity of the system's concepts; 𝐹 is transfer 

function of the system. The function of the activity of the system's concepts may be presented as follows: 

𝐹𝑐: 𝐶𝑖 → 𝐹𝑐𝑖 (20) 

Let us assign a measure of activity to each node at time t. The function can take the value "0", i.e., no activity, or "1" 

– active. Then 𝐹𝑐(𝑡) can be considered an activity (states) vector of concepts at iteration t. 𝐹𝑐(0) will be a vector of initial 

values of activity of concepts. The system transfer function F may be presented as follows: 

𝐹: 𝑅 → 𝐿 (21) 

where 𝐿 is transfer function 𝐹𝑐𝑖(𝑡 + 1) and 𝐹𝑐(𝑡), 𝑡 ≥  0, that may be represented as Equation 22: 

𝐹𝑐𝑖(𝑡 + 1) = 𝑓 (∑ 𝑢𝑖𝑗𝐹𝑐𝑗(𝑡)
𝑛
𝑖=1
𝑗≠𝑖

)  (22) 
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This function is necessary to limit the sum to the range [0; 1] and may be: 

– Discrete bivalent: 

𝑓(𝑥) = {
0, 𝑥 ≤ 0
1, 𝑥 > 0

  (23) 

– Discrete trivalent: 

𝑓(𝑥) = {
−1,           𝑥 ≤ 0.5
0, −0.5 < 𝑥 < 0.5
1,               𝑥 ≥ 0.5

  (24) 

– Continuous (logistical):  

𝑓(𝑥) =
1

1+𝑒−𝐹𝑐𝑥
  (25) 

This representation of MSNS over time results in a sequence of state vectors that can define the system state under 

simulation within further iterations. Thus, the significance of each concept can be analyzed. The result of conducting 

such a simulation will be the level of significance of the concept after some time interval. Setting different initialization 

vectors provides different simulation results. 

4- Results and Implications 

The section presents the testing results of the approach proposed to construct a fuzzy cognitive MSNS. The modeling 

results are presented compared to the initial data; error rates, types of normalization, and the crosscheck procedure are 

described. 

Four public datasets were used to validate the benefits of our proposed approaches. Three of these datasets are time 

series of electricity load data for the Australian energy market [37], containing 48 electricity load measurement points 

for each measurement day. Time series data for New South Wales (NSW), South Australia (SA), and Victoria (VIC) 

were used for modeling. The fourth set of independent public data obtained from the Federal Reserve System website 

[38] contains information on the inventory-to-sales ratio (ISR). 

Next, x data points obtained using the EWT were normalized to the 𝑥𝑁𝑂𝑅𝑀 value in the range [-1; 1]. The maximum 

𝑥𝑀𝐴𝑋 and minimum 𝑥𝑀𝐼𝑁 values of each time series were used for normalization by Formula 26, respectively. The choice 

of this normalization method is since the hyperbolic tangent Function 11 is used as a non-linear transformation function. 

𝑥𝑁𝑂𝑅𝑀 = 2
𝑥−𝑥𝑀𝐼𝑁

𝑥𝑀𝐴𝑋−𝑥𝑀𝐼𝑁
− 1  (26) 

Then each dataset was divided into three samples in the proportion of 70%, 20%, and 10% of the dataset. The largest 

sample was used as a training sample, and the other two samples were used for validation and testing. In order to prevent 

overtraining of the predictive model on the training set, the hyperparameters that provide the best performance on the 

validation data sample were selected. At the same time, metrics such as RMSE and MASE, proposed by Hyndman and 

Koehler (2006) [39], were used to check the performance. The RMSE metric was calculated by the formula 27, and the 

MASE metric by the formula 28, respectively: 

𝑅𝑀𝑆𝐸 = √
1

𝐿
∑ (𝑥𝑗̂ − 𝑥𝑗)

2𝐿
1   (27) 

𝑀𝐴𝑆𝐸 = 𝑚𝑒𝑎𝑛 (
|𝑥𝑗̂−𝑥𝑗|

1

𝑇−1
∑ |𝑥𝑡−𝑥𝑡−1|
𝑇
𝑡=2

)  (28) 

where 𝑥𝑗  and 𝑥̂𝑗 is initial and predicted data points; 𝐿 is test sample size; 𝑇 is training sample size. 

Let us describe the modeling process and the results on the example of the ISR time series. Above all, the first 

difference in the initial time series is calculated, and then the data are subject to normalization according to the Formula 

26. In order to provide cross-validation, the time series data are divided into three samples of size 70%, 20%, and 10% 

for training, validation, and testing, respectively. The number of nodes is selected by cross-validation using grid search. 

According to the autocorrelation function (ACF) of the ISR time series presented in Figure 4, the second-highest 

value after zero is the value at time lag 12. The EWT is applied for decomposing the augmented time series, and then 

the generated data samples are used for modeling, excluding the last filled data points. 
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Figure 4. Autocorrelation Function (ACF) of the ISR Time Series 

After defining the MSNS structure, the regularization coefficient of the 𝜖-support vector regression (𝜖-SVR) is 

determined for each node. A special method of MSNS training is used to improve immunity to outliers based on the 𝜖-
SVR in which the insensitive loss function penalizes errors outside the cube but ignores errors inside it [40]. This learning 

process implements optimization of the MSNS weights, and then the model can be used for prediction. The well-known 

k-nearest neighbor (KNN) method is used to generate 12 prediction values. The time series is then decomposed by 

additional data points using the EWT. As a result, the trained MSNS can make predictions one step ahead until the 

predictions for the whole test sample have been generated. However, optimal settings should be considered 

hyperparameter values that ensure minimum RMSE on the validation dataset. An illustration of the results for the ISR 

data is presented in Figure 5, where we can see that the obtained approximation correctly reflects seasonal data 

fluctuations.  

 

 

Figure 5. Approximation Data Generated Using EWT 
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In order to identify the advantages and disadvantages of our proposed methodology for cognitive modeling of 

semistructured systems based on the construction of fuzzy cognitive MSNS, we further compared its results with the 

results of other widely used prediction models. In addition to the ISR dataset, three previously mentioned open datasets, 

NSW, SA, VIC, were compared. The following models were chosen as classical models for comparison: ARIMA model 

[41-43], Fuzzy time series model [44-46], SVR [47], Multi-layer Perceptron (MLP) [48-50]. The learning stop criterion 

𝜖 − 𝑆𝑉𝑅, as proposed in [51], is controlled by error tolerance at the 1×10-3 level. The comparison based on RMSE and 

MASE metrics is presented in Table 1. 

Table 1. Comparison with Classical Models by RMSE and MASE Criteria 

Dataset 

Model 

NSW SA VIC ISR NSW SA VIC ISR 

RMSE MASE 

ARIMA 151.288 50.255 103.116 0.163 0.660 0.703 0.670 1.295 

SVR 103.771 38.595 89.469 0.052 0.410 0.580 0.596 0.437 

MLP 141.013 36.195 88.103 0.054 0.565 0.587 0.601 0.416 

Fuzzy time series 133.520 43.379 108.045 0.107 0.560 0.676 0.757 0.852 

Present work 97.702 33.346 86.185 0.049 0.392 0.542 0.572 0.360 

The analysis of the results presented in Table 1 allows us to conclude that, among the models considered, our model 

provides the best performance in terms of RMSE and MASE for most time series. In contrast, the ARIMA model works 

the worst, which is explained by its linear structure. In contrast to the RMSE criterion, the MASE criterion can be used 

to compare prediction performance for completely different data [39]; in this regard, the statistics data for the MASE 

criterion are presented further in Table 2. It shows that our model achieves the lowest mean, median, minimum, and 

maximum MASE values. Therefore, we can conclude that our model provides the best performance on the studied 

datasets, compared with the classical models ARIMA, SVR, MLP, and Fuzzy time series. Thus, it can be concluded that 

the goal of this work to improve the accuracy of cognitive modeling of semistructured systems based on the fuzzy 

cognitive MSNS has been achieved. According to the experiments, we conclude that the small decomposition levels 

work well on time series. The prediction accuracy degenerates with the increase of decomposition level. A small 

decomposition level also connotes a small number of nodes and high interpretability. In addition, the proposed model 

achieves the best performance in terms of MASE and RMSE on these eight datasets, which validates the proposed 

model's superiority compared with the baseline models 

Table 2. MASE Criterion Statistics 

Dataset 
Model 

ARIMA SVR MLP Fuzzy time series Present work 

Maximum 2.471 0.596 0.601 2.021 0.572 

Maximum 0.66 0.348 0.358 0.56 0.324 

Median 1.058 0.4555 0.5305 0.8045 0.392 

Mean 1.1925 0.4753 0.51 0.9436 0.4265 

5- Conclusion 

Management decision-making with large amounts of information can often be associated with complexity and a lack 

of structured data. Compared to the choice between alternative management decisions, a higher priority has the task of 

preparing the management decisions themselves, which is only possible based on an in-depth analysis of the behavior 

and structure of a complex system. Understanding the system under study and identifying real problems, and the causes 

of their emergence is a prerequisite for making a good managerial decision. Based on this, a very urgent task is the 

development and improvement of decision support systems.  

In DSS development, a proven approach is to build a cognitive model based on the FCM, a universal tool for modeling 

and research processes in semistructured and weakly formalized systems. Their usage makes it possible to structure the 

decision-making process, identify and consider the influence of significant factors, and perform modeling of the behavior 

of complex systems related to the task to be solved. This study proposes a new algorithm for constructing a fuzzy 

cognitive MSNS. This map combines the positive properties of the previously existing FCM. Based on the MSNS, 

modeling problems should increase the reliability and quality of analysis and modeling of semistructured systems and 

processes under uncertainty. It was proved using open datasets that, in contrast to the classical ARIMA, SVR, MLP, and 

Fuzzy time series models, our proposed model provides the best performance in terms of MASE and RMSE metrics that 

confirm its advantage. The comparison with the baseline models also demonstrates that the proposed algorithm can 
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improve generalization ability. Thus, it is advisable to use our proposed algorithm in the future as a mathematical basis 

for the development of software tools for the analysis and modeling of the problems of semistructured systems and 

processes. A possible direction for future research could be the improvement of time series decomposition methods in 

conjunction with FCMs.  
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