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Abstract 

The heat exchanger (HE) is a device that is used to complete the process of heat transfer between 

different matters without direct mixing. Therefore, it is of great importance in the transfer of 

energy and the completion of various energy transition processes. In the processes of HE between 
different energy systems, many factors influence and play a major and important role in the 

efficiency of transformation and exchange in forms of energy, such as the length, the material type, 

the exchange fluid, the surrounding environment, and many other factors. In this work, the effect 
of the HE length of the parallel and counter flow HEs was investigated based on the use of 

computer simulation programs. There was a significant impact of the exchange factors, especially 

the length of the HEs in both the parallel and counter-flow HEs, on the quality and efficiency of 
the HE and the temperature distribution. The overall evaluation shows that by increasing the length 

of the HE for both parallel and counter-flow HEs, the heat transfer is increased and the heat 

distribution becomes more homogeneous, which aids in enhancing the transfer of energy 
efficiency inside the HEs. 
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1- Introduction 

Energy is one of the most important factors that affect the stability of any system, and thus, dealing with different 

energy systems is very important to achieve the greatest possible benefit from energy sources [1-3]. Energy sources are 

divided into conventional and renewable sources, and both types participate in securing the necessary energy to complete 

the requirements of the various engineering systems, and they also participate to a large extent in some support systems 

to complete the utilization of the energy of various kinds [4-6]. We found many studies around the world concerned 

with traditional energy sources, determining their whereabouts and the best ways to benefit from them, as well as the 

matter of renewable energy sources, as many studies and evaluations of renewable energy sources have emerged as a 

solution and a basic alternative to traditional energy sources [7-9]. Studying energy sources alone is considered 

insufficient to determine the greatest benefit from them [10-12]. Here, work is highlighted in the aid of systems that are 

concerned with utilizing energy, such as turbines of all kinds, boilers of all kinds, coolers, pumps, and other support 

systems [13–15]. The HE is considered one of the most important systems that help in the process of completing the 

various energy cycles, as it is based on completing the transfer of heat from the different parts of the systems without 

the need for physical mixing [16-18]. 
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Energy recovery in industrial and engineering facilities is one of the most important issues that greatly impacts on 

saving and sustaining work, as the energy losses in such facilities are very large and costly [19–21]. Here, work is 

highlighted in the use and development of various HEs to maximize energy utilization and recycle the possibilities of 

them [22–24]. The HE is used with various conventional or renewable energy systems as this device is used to complete 

engineering cycles, and in the absence of this device, some systems are unable to complete their work and achieve 

benefit from them [25–27]. Also, the system may be completely disabled due to the absence or failure of the HE [28-

30]. Here is the importance of defining the HE, and it is defined as a device used to transfer heat between different 

materials without direct mixing. This is done through tubes that transport different materials, and these tubes are exposed 

directly to each other, leading to heat transfer [2, 23, 31]. Heat transfer operations using HEs depend on many important 

factors, and among those factors is the shape of the HE [22, 32, 33].  

Here, the most important forms of HEs stand out, which are the parallel HEs, which work so that the flow of materials 

is completely in the same direction, and the counter HEs, in which the flow of materials is in the opposite direction, that 

is, the hot material is in one direction and the cold material is in the opposite direction [34-36]. Other conditions that 

influence the HE processes stand out, such as the type, which has an effect on the quality of the HE, but a number of 

other factors are no less important, including the flow rate inside the HE, the length of the HE, the nature of the materials 

used in the manufacture of the HE, and the lifecycle of the HE [37-39]. Many researchers around the world have studied 

ways to develop HE in order to maximize its benefits. There are several techniques for shell and tube HE enhancement: 

shell enhancement and tube enhancement. Shell enhancement works on the flow shape with different styles, such as the 

flower barriers [40] and the helical barriers [26]. There are different barrier styles, such as flow with diverse patterns in 

the shell, which have an impact on the efficiency. Kozeki et al. [41] studied the helically-coiled HE with stainless steel 

tubes. The results illustrated that the exchange quality affects the local heat transfer coefficient. 

As noted before, the heat transfer improvement in shell and tube HE is considered part of the improvement of the 

shell or tube side. The tube enhancement is not only for tubers that belong to shell-tube HE but also for the other HE. 

Relying on the design conditions for HE, a large transfer area means enhancing the heat transfer. The fins are one of the 

ideas to maximize the area of the transfer. Desai et al. [42] investigated the fluid vibrations inside the HE provided by 

fins. He found that the fine arrays are stable, which aids in the stability of the HE body. Deng et al. [43] presented a 

study about the thermal storage with the HE provided by fins, and he found that the fins play a major role in storing the 

thermal energy. Different HEs are used according to the requirements [44]. Guo et al. [45] provided a design module 

for the HEs aimed at reducing the volume of the exchanger, with the aim of reducing the cost of the fabrication. Wang 

et al. [46] present work regarding the pattern and optimization of the multi-layer exchangers. The exchanger provided 

with the fin is widely used with low-pressure exchangers [47]. 

The new circuit HE is made from several plates and connected by diffusion bonding. The operating conditions deal 

with the channel system of the plates. The new conditions lead to a complex design. An example of the diffusion-bonded 

process is copper-nickel, nickel alloys, and titanium [25]. Figley et al. [48] studied the structure of the HE using 

numerical simulation and found a major effect of the structure on the HE work. Zheng et al. [49] developed a new 

channel with a new shape of the HE to investigate the efficiency. A transient flow is detected by the new design. Ma et 

al. [50] study the inclination of a new design numerically of the HE and the drop in the pressure. 

Simulation software is one of the most important engineering tools in investigating information about the work of 

engineering devices, as this software is based on simulating the virtual reality of working conditions and calculating 

expectations and the effects resulting from operating these various systems [49, 51, 52]. As a result of what simulation 

programs are doing, many industrial and engineering systems have been developed recently, as these programs reflect 

a clear picture of the work of the different systems and indicate potential faults and ways to address them during 

engineering design, even in some cases after implementing the design in reality [45, 48]. The simulation programs give 

hope of modifying the realistic designs with the lowest effort, cost, and best possible performance [32, 53, 54]. In this 

study, the operational and design conditions of the HE are highlighted, such as the flow rate of the matter inside the 

HEs, the length of the HE, and the effect of these conditions on the efficiency of the HEs. 

2- Heat Exchange Theory 

Typically, HEs are classified according to the internal arrangement, flow profile, and internal structure. One of the 

most widespread HEs depends on the flow of fluids inside it, so hot and cold fluids flow in the same direction or in the 

opposite direction in what is known as the parallel-flow or counter-flow HE, respectively. Figure. 1 shows the types of 

HEs used in this study, where the Figure 1A refers to the parallel flow HE, while the Figure 1B refers to the counter 

flow HE. 
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Figure 1. Parallel flow HE (A), Counter flow HE (B) 

The heat exchange calculations inside the HEs start by calculating the value of the overall heat exchange coefficient 

as shown in the equations below. This is followed by the calculation of the heat transfer rates, taking into account the 

different temperatures of the hot inlet and the cold inlet and their exits as well, so that the effect of heat exchange can 

be properly studied along the length of the HE and then shows the effect of HE conditions on the heat exchange value. 

1

𝑈. 𝐴
=

1

(ℎ. 𝐴)𝑐
+ 𝑅𝑤 +

1

(ℎ. 𝐴)ℎ
 (1) 

Taking into the consideration the effects of the fouling factors "𝑅𝑓" where it can be extracted as a fixed value based 

on the system used such as steam, refrigeration liquid, and others as well as the temperature effectiveness of all surfaces. 

Then the above equation will be: 
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Where; 𝜂𝑜 = 1 −
𝐴𝑓

𝐴
(1 − 𝜂𝑓) 

Table 1 shows the values of the overall heat transfer coefficients as well as the values of the fouling factors for the 

selected systems. 

Table 1. Overall heat transfer coefficient and fouling factors for selected systems 

Fluid Rf (m
2.K/w) Fluid combination U (W/m2.K) 

Seawater and treated boiler feed water below 50 °C 0.0001 Water to water 850 - 1700 

Seawater and treated boiler feed water above 50 °C 0.0002 Water to oil 110 - 350 

River water 0.0002-0.001 Steam condenser 1000 - 6000 

Fuel oil 0.0009 Ammonia condenser 800 - 1400 

Refrigeration liquid 0.0002 Alcohol condenser 250 - 700 

Steam 0.0001 Finned-tube 25 - 50 

To design the HE several factor taken into the consideration based on the temperature distribution. The log mean 

temperature difference approach is considered for the design as the following: 

𝑞 = 𝑚̇ℎ(𝑖ℎ,𝑖 −  𝑖ℎ,𝑜) 

and, 

𝑞 = 𝑚̇𝑐(𝑖𝑐,𝑜 −  𝑖𝑐,𝑖) 

The above equations can be rewritten in term of using the temperate difference as: 

𝑞 = 𝑚̇ℎ. 𝐶𝑝.ℎ(𝑇ℎ,𝑖 − 𝑇ℎ,𝑜)  

and, 

𝑞 = 𝑚̇𝑐 . 𝐶𝑝.𝑐(𝑇𝑐,𝑜 −  𝑇𝑐,𝑖) 

Finally, the overall heat transfer expressed as the Equation 3; 

𝑞 = 𝑈. 𝐴. Δ𝑇𝑚 (4) 

For the parallel and counter HE, the total heat exchange is based on the temperature difference as log mean difference 

which is deeply depend on the structure of the HE as it is clear from the Figure 2. The heat transfer is depending on the 

structure of the HE as the amount of the heat at each stage effected by the direction of the flow. As a part of the structure 

effect the length of the exchanger effect the amount of the heat transfer as well as it can reduce or increase the time of 

the heat exchange. 
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Figure 2. The temperature distribution in the (A) Parallel HE, (b) Counter HE 

The log mean temperature is calculated based on the structure of the HE with an assumption of insulated HE from 

its surrounding, negligible axial conduction along the tube, constant fluid specific heat, and constant overall heat transfer 

coefficient. So the log mean temperature can be given as: 

Δ𝑇𝑙𝑚 =
Δ𝑇2− Δ𝑇1

ln (Δ𝑇2 Δ𝑇1)⁄
=  

Δ𝑇1− Δ𝑇2

ln (Δ𝑇1 Δ𝑇2)⁄
  (5) 

Where, the parallel-flow exchanger temperature condition is: 

∆𝑇1 =  𝑇ℎ,1 − 𝑇𝑐,1 = 𝑇ℎ,𝑖 − 𝑇𝑐,𝑖 

∆𝑇2 =  𝑇ℎ,2 − 𝑇𝑐,2 = 𝑇ℎ,𝑜 − 𝑇𝑐,𝑜 

and, the counter-flow exchanger temperature condition is: 

∆𝑇1 =  𝑇ℎ,1 − 𝑇𝑐,1 = 𝑇ℎ,𝑖 − 𝑇𝑐,𝑜 

∆𝑇2 =  𝑇ℎ,2 − 𝑇𝑐,2 = 𝑇ℎ,𝑜 − 𝑇𝑐,𝑖 

Figure 3 shows the flowchart of the work which is started from the HE selection to be parallel or counter flow the 

simulation code is run with different input of the HE length to the final step which is the result extraction which reflect 

the best length as well as the highest efficiency of the investigated HEs. 

 

Figure 3. Research Methodology flowchart 
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The research methodology depends on testing the effect of the HEs lengths that start 10, 15, 20, and 25 m by using 

the simulation program code to re-work each time with a different length and comparing the effect of that length on the 

heat exchange and the temperature distribution and then testing the length that follows to finish the comparison and thus 

reach the result that It helps in choosing the most suitable HE with the best length for different engineering applications. 

3- Results and Discussion 

The results of this work are based on studying the effect of HE length for different types, including parallel and 

counter HE with a hot substance flowrate equal to 0.2 k and 0.3 kg/s for the cold substance. The effect of the HE length 

has been studied for several lengths, which are 10, 15, 20, and 25 m of the mentioned systems. Where it is found inside 

the parallel HE with liquid water medium, the heat transfer was increased by increasing the length of the heat transfer 

as it was 42.9 kW for the length of 10 m, 47.6 kW for the length of 15 m, 49.5 kW for the length of 20 m, and 50.2 kW 

for the length of 25 m. Figures 4A to 4D and Figures 5A to 5D show the temperature distribution inside the parallel HE 

with liquid medium between the hot and cold substances as it is clear that the temperature difference gap decreases by 

increasing the HE length as well as the heat transfer rate. 

 

Figure 4. Parallel HE with length of (A), 10 m (B), 15 m (C), 20 m and (D) 25 m  

 

Figure 5. Parallel HE temperature distribution at length of (A), 10 m (B), 15 m (C), 20 m, and (D) 25 m 
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Figures 6A to 6D show the heat exchange process in the counter HE where it was found that by increasing the length 

of the HE the heat transfer is increasing as well where the heat transfer was 48.7 kW inside the HE with 10 m length, 

58.6 kW inside the 15 m length HE, 65.1 kW inside the 20 HE length, and 69.6 kW inside the 25 m length HE. through 

the comparison between the parallel and counter HEs it was found that the counter HE is more efficient in the heat 

transfer as the values of the heat transfer rates is more in the counter HE compared to the parallel HE. Figure 7 A to D 

shows the temperature distribution inside the counter HE. It is clear that the temperature difference gap in the counter 

HE decreases with increasing the length of the HE as well as the heat transfer rate.   

 

Figure 6. Counter HE with length of (A), 10 m (B), 15 m (C), 20 m, and (D) 25 m 

 

Figure 7. Counter HE temperature distribution at length of (A), 10 m (B), 15 m (C), 20 m, and (D) 25 m 

The temperature profile for both HE parallel and counter shows two disadvantage which is the thermal stresses due 

to the large temperature difference at the end and the huge temperature difference gap which make the cold substance 

never reach the lowest temperature of the hot substance. The counter flow HE shows more advantages compared to the 

parallel heat flow exchanger which is a more uniform temperature difference distribution, the cold substance can reach 

the hot substance entrance temperature and more heat transfer homogenous distribution. 
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The results show the effect of the design conditions on the performance of the HEs, as we found that the length of 

the HE plays a major role in influencing the increase in heat exchange between the materials used in the HE (hot-cold). 

The heat exchange performance increases in the two types of HEs used, which are the parallel-flow exchanger and the 

counter-flow exchanger. The reason for the increase in the efficiency of the heat exchanges with increasing length is 

due to the increase in the surface area of the heat exchange and the increase in the time period to which the heat transfer 

materials are exposed between them. The results also show that the counter-flow HE has a higher efficiency than the 

parallel-flow HE because of the higher temperature difference in the counter-flow HE compared to the parallel-flow 

exchanger. 

Many researchers studied the problems with HEs and ways to improve the quality of heat transfer in HEs. Here we 

found Wang et al. [46] who studied the increase in the heat exchange area, and they found that the efficiency of the HE 

increased, which is what was supported in this study. Zheng et al. [49] also studied the shape of the HE channels and 

found that by modifying the HE design internally, the efficiency of the HE is improved. Here we also found that this 

study supports this idea and develops the scientific content of that hypothesis. 

4- Conclusion 

Overall, this study is based on verifying the design conditions of parallel and counter-flow HEs, and in particular, 

studying the effect of increasing the length of the HEs on the efficiency of heat exchange. As it becomes clear from 

these results, the heat distribution within the HEs, whether in parallel or counter flow, is more homogeneous. The reason 

for the increase in the efficiency of HEs by increasing the length is due to the increase in the surface area of heat exchange 

and the increase in the time period for heat exchange processes inside the HEs. It was also found that by comparing the 

parallel and counter-flow HEs, the counter-flow HEs have a higher efficiency, and this is due to the reason of the 

temperature difference between the ends of the HE, which is higher than the temperature difference in the parallel-flow 

HE. In general, it is found that the change in the design conditions of HEs of different types often has an impact on 

increasing the efficiency of heat exchange. This is supported by previous research and scientific studies, and here it is 

recommended that studying the improvement of new design conditions is necessary to increase the efficiency of HEs in 

the future.. 

5- Nomenclature 

U Overall heat coefficient q Heat transfer Th,o Temperature, hot outlet 

A Area 𝑚̇ℎ Mass flowrate, hot side Tc,o Temperature, cold outlet 

Rw Conduction resistance  ic,o Fluid enthalpy cold side outlet Tc,i Temperature, cold inlet 

Rf,c Fouling factor, cold side ic,i Fluid enthalpy cold side inlet Th,i Temperature, hot inlet 

𝑚̇𝑐 Mass flowrate, cold side ih,o Fluid enthalpy hot side outlet 𝜂𝑓 Fin efficiency 

Rf,h Fouling factor, hot side ih,i Fluid enthalpy hot side inlet Δ𝑇𝑚 mean temperature difference 

𝜂𝑜 Temperature effectiveness  Cp,h Specific heat at constant pressure, hot side   

Af Fin surface area Cp,c Specific heat at constant pressure, cold side   
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