

Emerging Science Journal

Vol. 2, No. 3, June, 2018

Mapping Global Research Output in Big Data during 2007-16

S.M.Dhawan^a, B.M.Gupta^{b*}, Ritu Gupta^c

^a Formerly CSIR –NPL, New Delhi (Present Address: 114 DayanandVihar, Delhi 110092). India.

^b Formerly CSIR –NISTADS, New Delhi (Present Address: 1173 Sector 15, Panchkula 134 113, Haryana). India.

^c Formerly with Sri Venkateshwara University, Tirupathi, Andhra Pradesh (Present Address: 1K/A Arjun Nagar, Safdarjang Enclave, New Delhi 110029), India.

Abstract

The paper examines global research in big data, as covered in Scopus database 2007-16, on a series of bibliometric indicators. The study finds that big data registered exceedingly fast growth (135.2%), but averaged low citation impact per paper (3.75) and accounted for very low share of highly cited papers (0.86%) in 10 years. The study reports publication trends in big data research by top countries, top institutions, top authors, top journals, major subject areas, publication modes, and country-level share of international collaborative publications. The study concludes that big data is a subject of recent origin. Given its major potential to impact business, governance, society, healthcare, industry and many other sectors, big data is fast emerging as a major discipline of interest and importance to nations, corporates, and institutions across developed and fast emerging economies.

Keywords:

Big Data Research, Global Publications; Scientometrics; Bibliometrics.

Article History:

Received:	17	May	2018
Accepted:	01	July	2018

1- Introduction

Big data refers to massive data repositories, so huge and complex in size and data types, that traditional databases find it beyond their ability to capture, manage, and process such data sets and deriving therefrom new meaning and value that can dramatically improve business policies and practices. Big data sets are growing at dazzling speed in volume and variety and processing such larger data sets using standard IT technologies is a challenge. Big data includes structured, semi-structured, and unstructured data of diverse types and sizes ranging from terabytes to zettabytes. Unstructured data includes images, email, text messages, mobile and social media updates. The essence of big data is to create order from chaos, value from volume, and fresh insights from unexplored unstructured data. Major sources contributing to big data sets include mobile and social media, internet of things, and artificial intelligence sources, and that such big data sets are swelling by the minute in volume, velocity and variety [1].

Big data is an umbrella term that refers to the use of big data analytics, big data platforms, software tools and techniques to capture, store, analyze and harness previously untapped data sources independently or together with existing enterprise data. Data analytics techniques include text analytics, machine learning, predictive analytics, data mining, statistics, and natural language processing, businesses. These techniques can make data simple, accessible, and help gain analysts deep insight into raw data and useful to make better and faster decisions; improve business processes and policies [2-3].

Over the years, big data has evolved into a research and scientific study on how to make big data work [4]. The research studies in big data are into big data technologies, big data platforms and big data infrastructure. Big data studies are also into developing user toolsets designed to examine current data streams and big data repositories, and develop low cost and low complexity big data environment that is stable, highly integrated, and scalable. The challenge in big data research studies is how to make organizations big data ready, how to make the power of big data and big data

* **CONTACT**: bmgupta1@gmail.com

DOI: http://dx.doi.org/10.28991/esj-2018-01135

© This is an open access article under the CC-BY license (https://creativecommons.org/licenses/by/4.0/).

analytics available to all the parts of the organization that need them to discover valuable insights, make better decisions and solve actual business problems.

1-1- Literature Review

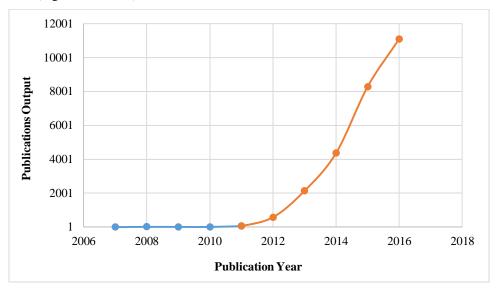
Of late, a number of bibliometric studies have been conducted that are national and global in scope. Amongst these studies, Halevi and Moed [4] analyzed publications data on big data from several perspectives: time line, types of published papers, geographic output, disciplinary output and thematic and conceptual development. They download data from Scopus database and in conclusion described the emergence of global big data as a research topic. Singh, Banshal, Singhal and Uddin [5] studied big data research output published during 2010-14, and as covered in both databases, Web of Knowledge and Scopus, for research growth, authorship patterns, country-level research collaboration patterns, major contributors (countries, institutions and individuals), top publication sources, thematic and emerging themes in the field. Singh and Singh [6] mapped Indian research output in the area of big data published during 2001-15, using Scopus database, for understanding current status, growth, and collaboration trends in big data research and diffusion of big data research in Indian scientific literature. Liu [7] analyzed big data research output (282 records using SSCI database during 2005-15) for understanding distribution of research by publication year, growth pattern, top journals, top subject areas, top countries/territories, academic institutions, top authors and applicability of Lotka's law. Porter, Huang, Schuehle and Youtie [8] presented a meta-analysis of big data research activity, covering 7006 research publications since 2009 from Web of Science database. Using "tech mining" (bibliometric and text analyses of research publication abstract record sets), the authors provided a research landscape of who is doing what, where, and when. Mathisen, Wienhofen and Roman [9] presented the current status of empirical research in big data by mapping the collected research (covering 1778 contributions) according to the labels: variety, volume and velocity. Besides, they identified application areas of big data. The authors concluded that the share of publications conforming to empirical results is well below the average compared to computer science research as a whole. Kalantri et al [10] analyzed 6572 papers in big data field as indexed in in Web of Science TM Core Collection database from 1980 to 19 March 2015 and reported publication trends by document type and language, year of publication, top countries, top journals, top research areas, and top authors.

There were a few other bibliometric studies but covering only application dimensions of big data field in medical science. Liao, Lee, Li, Chiclana and and Zeng [11] used visualization tools (GraphPad Prism 5, VOSviewer and CiteSpace softwares) to identify annual trends, top authors, top journals, top institutes, country-level citations and H-index, keywords distribution, highly cited papers, and co-authorship status. Gua, Lia, Lia and Lianga [12] provided an overview of healthcare big data research, research hotspots and future research directions. Youtie, Porter and Hunag [13] examined a dataset of 488 social science and humanities papers written about big data and concluded that eight sub-fields are important in framing social science research about big data. The big data field covering social science is evolving from general sociological considerations towards social science applications, issues, and privacy concerns.

1-2- Objectives

The study analyses the performance of global big data research during 2007-16, based on publications, citations and international collaborative publications covered in Scopus database. The focus of study in particular was to growth characteristics and pattern of world research output and its citation received; global publications output, share and citations of top 12 most productive countries; international collaboration share of top 12 most productive countries; the subject-wise distribution of global research output and its growth and decline; identification of significant keywords; publication productivity and citation impact 100 most productive organizations and authors; leading medium of communication and characteristics of top 96 high cited papers.

2- Methodology


The global research output on big data studies was identified, retrieved and downloaded from the Scopus database (http://www.scopus.com) 2007-16, using a well formulated search strategy. The search strategy included using the term "big data" in "keyword tag", "article title tag", and "source title tag" and restricted search output to period 2007-16 in "date range tag". This main search string was further restricted to individual country by name in "country tag" to ascertain publication output of top 12 most productive countries in big data research. The main search string was also refined by "subject area tag", "country tag", "source title tag", "journal title name" and "affiliation tag" one by one and accordingly determined distribution of big data publications output by subject, collaborating countries, author-wise, organization-wise and journal-wise, etc. For citation data, citations to publications were collected from date of publication till 27 January 2018.

(KEY ("big data") OR TITLE ("big data") OR SRCTITLE ("big data")) AND PUBYEAR > 2006 AND PUBYEAR < 2017.

3- Analysis

3-1- Publications Distribution

Big data research registered 136.84% CAGR growth, cumulated 26566 publications globally in 10 years during 2007-16, and witnessed a big jump in its annual output from just 2 in 2007 to 11104 publications in 2016. The second-half of the study period (2012-16) cumulated a five-year high of 26477 publications, compared to just 89 during the first-half (2007-11), an absolute five-year growth 29649%. The big data research averaged 3.75 citations per paper since publication in 10 years during 2007-16, and citation impact of its five-year output dropped from 39.58 CPS in 2007-11 to 3.63 CPS in 2012-16 (Figure 1, Table 1).

		put in Dig Dut	a Ficia: 2007-10.
Year	Papers	Citations	Citations Per Paper (CPS)
2007	2	0	0
2008	13	942	72.46
2009	11	623	56.64
2010	9	152	16.89
2011	54	1806	33.44
2012	576	8441	14.65
2013	2138	18292	8.56
2014	4372	27950	6.39
2015	8287	28603	3.45
2016	11104	12781	1.15
2007-11	89	3523	39.58
2012-16	26477	96067	3.63
2007-16	26566	99590	3.75
Annual Growth	275.81%	_	
CAGR	136.84%		
Quinquennial Growth	29649.44%		

Figure 1. Global Research Output in Big Data Field: 2007-16.

Bulk of big data research appeared as conference papers (64.15%, 17043), and the remaining across other publication types such as articles (24.18%, 6423), book chapters (3.58%, 950), reviews (2.64%, 702), editorials (2.38%, 633), notes (0.97%, 139), short surveys (0.52%, 139), articles in press (0.46%, 121) and the rest as conference reviews (110), books (107), letters (61) and erratum(18) during 2007-16. The distribution of global publications output by language was skewed; as much as 96.65% share (25676) appeared in English and only 2.26% (600) in Chinese, 0.47% (125) in German, 0.21% (56) in Spanish, 0.20% (54) in French, and the rest in 15 other languages.

 Table 1. Global Research Output in Big Data Field: 2007-16.

3-2- Top 12 Most Productive Countries

In all, 161 countries participated in big data research during 2007-16, but only 12 had lead the field with their cumulative global output of 92.14%; their individual share varied between 2.40% and 27.98% of global output. The USA leads the world with 27.98% global share, followed closely by China (24.58%). Both USA and China account for more than 50% of global share, followed by India (6.62%), U.K. (5. 75%), Germany (5.11%), and others (Figure 2, Table 2).

Of the 12 top countries, six registered relative citation Index above the group average of 1.30: USA (1.88), UK (1.77), Canada (1.72), Australia (1.62), Italy (1.48) and Spain Korea (1.31) during the period (Table 2). China, India, Germany, and South Korea -- rated as the most productive countries after USA -- failed to register above average relative citation score, highlighting thereby gap in their performance in terms of quality and quantity of research.

Table 2. Publication Output and Global Publication Share of Top 20 Most Productive Countries in Big Data Research
during 2007-16.

S. No	Country Name	ТР	тс	%TP	%TC	CPP	ICP	%ICP	RCI
1	USA	7434	52379	27.98	52.59	7.05	776	10.44	1.88
2	China	6529	21142	24.58	21.23	3.24	739	11.32	0.86
3	India	1758	3298	6.62	3.31	1.88	191	10.86	0.50
4	U.K.	1527	10121	5.75	10.16	6.63	733	48.00	1.77
5	Germany	1358	5699	5.11	5.72	4.20	501	36.89	1.12
6	South Korea	1071	3330	4.03	3.34	3.11	200	18.67	0.83
7	Australia	922	5611	3.47	5.63	6.09	502	54.45	1.62
8	Japan	904	2298	3.40	2.31	2.54	213	23.56	0.68
9	Italy	825	4575	3.11	4.59	5.55	328	39.76	1.48
10	Canada	818	5286	3.08	5.31	6.46	430	52.57	1.72
11	France	694	2821	2.61	2.83	4.06	346	49.86	1.08
12	Spain	638	3123	2.40	3.14	4.89	303	47.49	1.31
	Total	24478	119683			4.89	5262	21.50	1.30
	World Total	26566	99590			3.75			
	Share of 12 countries in World Total	92.14							

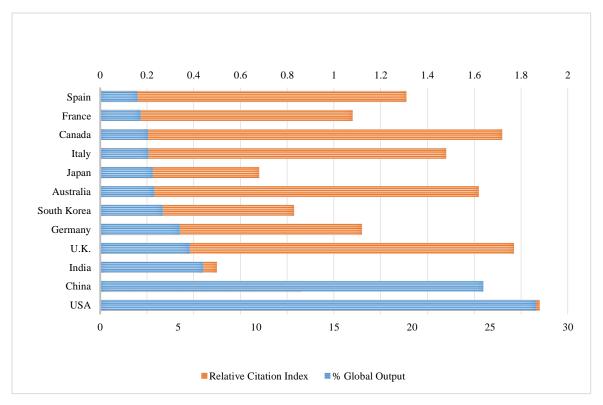


Figure 2. Quantity & Quality Comparative Study of Top Most Productive Countries: 2007-16.

3-3- International Collaboration

International collaboration in big data research has been common amongst top 12 most productive countries and published 10.44% to 54.45% of their national output as international collaborative publications. Australia published 54.45% of its national output, the highest amongst 12 most productive countries, as international collaborative publications, followed by Canada (52.57%), France (49.86%), France (45.69%), U.K. (48.0%), Spain (47.49%), Italy (39.76%), Germany (36.89%), Japan (23.56%), South Korea (18.67%), China (11.32%), India (10.86%) and USA (10.44%) during 2007-16.

3-4- Subject-Wise Distribution of Research Output

The global big data research cuts across several disciplines as reflected in Scopus database classification. Computer science is the most studied subject in big data research accounting for 67.99% subject share, the highest compared to other subjects, followed by engineering (42.65%), social sciences (13.80%), and the rest in other subjects as covered in Table 3.

C N-	C1:4-*	Num	ber of Papers (TP)	Activi	0/ TD	
S.No	Subjects*	2007-11	2012-16	2007-16	2007-11	2012-16	– %TP
1	Computer Science	47524	47489	95013	103.43	96.79	67.69
2	Engineering	32072	27791	59863	110.78	89.90	42.65
3	Social Sciences	11856	7511	19367	126.58	75.10	13.80
4	Mathematics	5172	6893	12065	88.64	110.64	8.59
5	Medicine	2532	5149	7681	68.16	129.82	5.47
6	Physics & Astronomy	1682	2893	4575	76.02	122.46	3.26
7	Business, Accounting & Management	1905	2112	4017	98.06	101.82	2.86
8	Biochemistry, Genetics & Molecular Biology	1516	1622	3138	99.90	100.10	2.24
9	Materials Science	1349	1765	3114	89.58	109.76	2.22
10	Decision Science	939	1186	2125	91.37	108.08	1.51
	World Total	67887	72488	140375			

Table 3. Subject-Wise Break-up of Global Publications on Mobile Research during 2007-16.

4-6- Significant Keywords

Around 69 significant keywords were identified from the literature that seeks to highlight broad trends in big data research. These keywords are listed in Table 4 in the decreasing order of their occurrence during 2007-16.

S.No	Name of Keyword	Frequency	S.No	Name of Keyword	Frequency
1	Big data	21961	36	Ubiquitous computing	519
2	Data mining	3733	37	Big data analytics	487
3	Data handling	2864	38	Metadata	484
4	Digital Storage	2454	39	Commerce	463
5	Cloud computing	2202	40	Bioinformatics	447
6	Algorithms	2126	41	Computer architecture	446
7	Artificial intelligence	2107	42	Websites	434
8	Information management	2076	43	Benchmarking	441
9	Distributed compute systems	1876	44	Network security	426
10	Social networking (Online)	1679	45	Information processing	425
11	Learning systems	1585	46	Information retrieval	425
12	Internet	1513	47	Health care	419
13	Map reduce	1260	48	World Wide Web	406
14	Big datum	1230	49	Behavioral research	402
15	Hadoop	980	50	Natural language processing	402
16	Semantics	945	51	Security of Data	396
17	Data privacy	916	52	Computer software	395
18	Internet of things	899	53	Data reduction	393
19	Classification (of information)	832	54	Iterative methods	393

Table 4. List of Significant Keywords appearing in Big Data Research Literature during 2007-16.

S.No	Name of Keyword	Frequency	S.No	Name of Keyword	Frequency
20	Optimization	814	55	Web services	384
21	Information analysis	808	56	Intelligent systems	381
22	Forecasting	769	57	Semantic web	381
23	Data visualization	739	58	Computational linguistics	378
24	Complex networks	732	59	Image processing	364
25	Cluster algorithms	722	60	Software engineering	362
26	Machine learning	686	61	Scalability	360
27	Information systems	672	62	Application programming	359
28	Database systems	660	63	Neural networks	360
29	Search engines	610	64	Cryptography	337
30	Query processing	580	65	Transportation	316
31	Big data applications	572	65	Mobile devices	313
32	Learning algorithms	572	66	Pattern recognition	293
33	Computation theory	556	67	Virtual reality	293
34	Social media	543	68	Embedded systems	291
35	Education	529	69	Data communication systems	285

4-7- Top 100 Organizations in Big Data Research

r

Top 100 most productive organizations originated from 15 countries, and they contributed 60 to 347 publications each, accounted for 36.01% (9566) global publications share and 61.33% (61074) global citations share during 2007-16. Of 100 organizations, 70 had originated from just two countries, 36 from USA (with 3232 papers) and 34 from China (3801 papers). The rest originated from 13 countries, 7 of which were from Australia (613 papers), 4 from Hong Kong (275 papers), and others. Singapore registered the highest impact (14.23), the highest h-index (15.50), and Hong Kong the highest international collaborative publications (69.82% of national output). (Figure 3, Table 5)

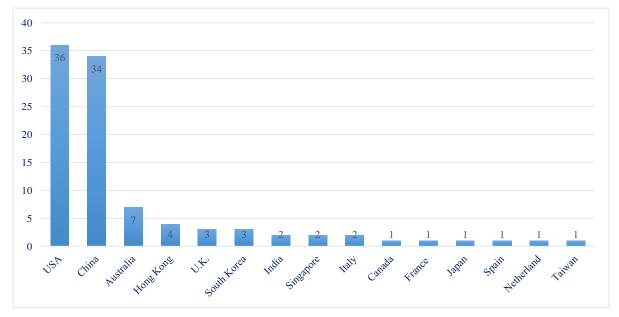


Figure 3. Top 100 Organizations in Big Data Research by Country of Origin: 2007-16.

	Table 5. Publication	and Citation Profil	e of Top 100 O	rganizations by	Country of Origin: 200	7-16.
--	-----------------------------	---------------------	----------------	-----------------	-------------------------------	-------

S. No.	Country Name	Organizations Count	ТР	TC	CPP	HI	ICP	%ICP
1	USA	36	3232	27493	8.51	12.56	1054	32.61
2	China	34	3801	16736	4.40	9.18	999	26.28
3	Australia	7	613	4349	7.09	12.86	341	55.63
4	Hong Kong	4	275	1898	6.90	10.50	192	69.82
5	U.K.	3	266	2898	10.89	15.00	151	56.77
6	South Korea	3	220	865	3.93	7.0	46	20.91
7	India	2	205	306	1.49	6.00	17	8.29

S. No.	Country Name	Organizations Count	TP	TC	CPP	HI	ICP	%ICP
8	Singapore	2	191	2717	14.23	15.50	128	67.02
9	Italy	2	152	800	5.26	10.00	61	40.13
10	Canada	1	98	1028	10.49	14.00	69	70.41
11	France	1	139	499	3.59	12.00	49	35.25
12	Japan	1	86	160	1.86	6.00	17	19.77
13	Spain	1	77	439	5.70	10.00	47	61.04
14	Netherland	1	76	260	3.42	9.00	35	46.05
15	Taiwan	1	70	412	5.89	11.00	24	34.29
	Total	100	9566	61074	6.38	10.95		33.97

Big data research involved participation of a total of 6802 global organizations, of which 5137 contributed 1-5 papers each, 766 organizations 6-10 papers each, 310 organizations 11-20 papers each, 230 organizations 21-40 papers each, 124 organizations 41-100 papers each and 235 organizations 101-348 papers each. On further analyzing these 100 organizations, it was observed that:

- Of the top 100 organizations, 38 registered productivity above the group average of 95.66 publications per organization: Tsinghua University ,China (347 papers), Beijing University of Posts and Telecommunications, China (220 papers), Ministry of Education, China (209 papers), Shanghai Jiao Tong University, China (182 papers), Wuhan University, China (163 papers), National University of Defense Technology, China (161 papers), Carnegie Mellon University, USA (142 papers), Massachusetts Institute of Technology, USA (139 papers), CNRS Centre National de la Recherche Scientifique, France (139 papers), Beihang University, China (136 papers), Peking University, China (136 papers), IBM Thomas J. Watson Research Center, USA (132 papers), etc. Among the 38 organizations, 15 each were from USA and China, 3 from Australia, 1 each from Canada, France, India, Singapore and U.K. The scientific profile of top 20 most productive organizations are shown in Table 6
- Of the top 100 organizations, 41 posted citation impact above group average of 6.38 citations per publication: University of Arizona, USA (19.58), University of California, Berkeley, USA (17.17), Nanyang Technological University, Singapore (17.14), Georgia State University, USA (15.98), Stanford University, USA (15.81), Microsoft Research, USA (13.90), University of California, San Diago, USA (12.79), Google, Inc., USA (12.58), Institute of Computing Technology, CAS, China (12.53), University of Oxford, U.K. (11.73), University of Science and Technology of China (11.54), University College London, U.K. (11.19), MIT, USA (11.06), University of Southern California, USA (10.08), University of Toronto, Canada (10.49), National University of Singapore (10.43), etc. Among the 41 organizations, 21 were from USA, 7 from China, 4 from Australia, 3 each from U.K. and Hong Kong, 2 from Singapore and 1 from Canada. The scientific profile of top 20 most productive organizations are shown in Table 6.
- Of the top 100 organizations, 41 contributed international collaborative publications (ICP) above the group average share (33.97%): City University of Hong Kong (74.29%), National University of Singapore (73.49%), Hong Kong Polytechnic University (72.0%), University of Toronto, Canada (70.41%), Chinese University of Hong Kong (69.57%), Deakin University, Australia (68.57%), University of Oxford, U.K. (67.59%), University of Technology, Sydney, Australia (62.83%), Hong Kong University of Science and Technology (62.30%), Nanyang Technological University, Singapore (62.04%), etc. Of the 49 organizations, 19 were from USA, 7 from Australia, 6 from China, 4 from Hong Kong, 3 from U.K., 2 each from Italy and Singapore, and 1 each from Canada, Netherlands, South Korea, Spain and Taiwan. The scientific profile of top 20 most productive organizations are shown in Table 6.
- Of the top 100 organizations, 41 registered relative citation index (RCI) above the group average (1.70): University of Arizona, USA (5.22), University of California, Berkeley, USA (4.58), Nanyang Technological University, Singapore (4.57), Georgia State University, USA (4.26), Stanford University, USA (4.22), Microsoft Research, USA (3.71), University of California, San Diego, USA (3.41), Google, Inc., USA (3.35), Institute of Computing Technology, China (3.34), University of Oxford, U.K. (3.13), University of Science and Technology of China (3.08), University College London, U.K. (2.98), etc. Of the 41 organizations, 21 were from USA, 7 from Canada, 4 from Australia, 3 each from U.K. and Hong Kong, 2 from Singapore and 1 from Canada. The scientific profile of top 20 most productive organizations are shown in Table 7.

S.No	Name of the Organization	ТР	тс	СРР	HI	ICP	%ICP	RCI
1	Tsinghua University	347	2453	7.07	20	110	31.70	3
2	Beijing University of Posts and Telecommunications	220	749	3.40	10	36	16.36	1
3	Ministry of Education China	209	772	3.69	14	34	16.27	0
4	Shanghai Jiao Tong University	182	1271	6.98	14	65	35.71	1
5	Wuhan University	163	556	3.41	12	34	20.86	0
6	National University of Defense Technology	161	456	2.83	11	28	17.39	1
7	Carnegie Mellon University	142	1289	9.08	17	53	37.32	2
8	Massachusetts Institute of Technology	139	1538	11.06	21	57	41.01	2
9	CNRS Centre National de la Recherche Scientifique	139	499	3.59	12	49	35.25	0
10	Beihang University	136	454	3.34	9	39	28.68	0
11	Peking University	136	363	2.67	11	33	24.26	0
12	IBM Thomas J. Watson Research Center	132	1337	10.13	17	52	39.39	1
13	Huazhong University of Science and Technology	131	1218	9.30	13	53	40.46	1
14	University of Southern California	129	1378	10.68	17	40	31.01	2
15	Zhejiang University	125	516	4.13	11	38	30.40	0
16	Amity Univerity, Noida	124	117	0.94	4	10	8.06	0
17	Harbin Institute of Technology	118	270	2.29	7	30	25.42	0
18	Georgia Institute of Technology	114	661	5.80	14	35	30.70	0
19	University of Technology Sydney	113	975	8.63	18	71	62.83	0
20	Nanjing University	113	592	5.24	15	37	32.74	0

Table 6. Scientometric Profile of Top 20 Global Organizations in Big Data Research by Productivity: 2007-16.

Table 7. Relative Citation Index: of Top 20 Organizations in Big Data Research by 2007-16.

S.No	Name of the Organization	ТР	тс	СРР	HI	ICP	%ICP	RCI
1	University of Arizona	78	1527	19.58	12	28	35.90	5.22
2	UC Berkeley	104	1786	17.17	20	39	37.50	4.58
3	Nanyang Technological University	108	1851	17.14	18	67	62.04	4.57
4	Georgia State University	83	1326	15.98	7	34	40.96	4.26
5	Stanford University	89	1407	15.81	16	29	32.58	4.22
6	Microsoft Research	63	876	13.90	14	28	44.44	3.71
7	University of California, San Diego	86	1100	12.79	16	26	30.23	3.41
8	Google Inc.	69	868	12.58	15	24	34.78	3.35
9	Institute of Computing Technology Chinese Academy of Sciences	92	1153	12.53	13	24	26.09	3.34
10	University of Oxford	108	1267	11.73	19	73	67.59	3.13
11	University of Science and Technology of China	97	1119	11.54	10	31	31.96	3.08
12	University College London	70	783	11.19	12	34	48.57	2.98
13	Massachusetts Institute of Technology	139	1538	11.06	21	57	41.01	2.95
14	University of Southern California	129	1378	10.68	17	40	31.01	2.85
15	University of Toronto	98	1028	10.49	14	69	70.41	2.80
16	National University of Singapore	83	866	10.43	13	61	73.49	2.78
17	IBM Thomas J. Watson Research Center	132	1337	10.13	17	52	39.39	2.70
18	Microsoft Corporation	66	637	9.65	12	24	36.36	2.57
19	Imperial College London	88	848	9.64	14	44	50.00	2.57
20	Huazhong University of Science and Technology	131	1218	9.30	13	53	40.46	2.48

Top 100 organizations in big data research posted constant decline in publications productivity, but top 40 posted declines faster than the rest 60s. Top 100 organizations revealed inconsistent trend in citations impact. Bottom 60 organizations (associated with lower productivity) posted higher citations per paper compared to top 40s (associated with higher productivity). This implies that top 40 organizations differ in terms of quality and quantity of research far more than the rest 60s. Furthermore, the productivity data analysis reveals that top 10 amongst 100 organizations lead in publications productivity (Figure 4).

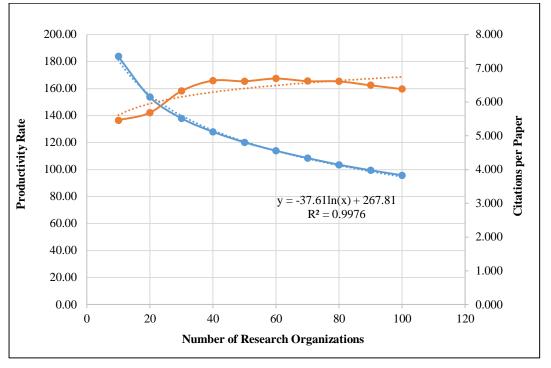


Figure 4. Top 100 Organizations Big Data Research: Quantity vs Quality Performance.

3-8- Top 100 Most Productive Authors in Big Data Research

A total of 9269 authors participated in big data research during 2007-16, of which 8452 contributed 1-5 papers each, 621 authors 6-10 papers each, 174 authors 11-20 papers each and 22 authors 21-47 papers each.

Top 100 most productive authors in big data research varied in their productivity from 13 to 47 publications in 10 years. Of these 100 organizations, 24 were from USA (with 422 papers, 19 from China (3410 papers), 12 from Australia (257 papers), 6 each from Italy and U.K. (121 and 99 papers), and others. In terms of citation impact per paper, Sweden registered the highest impact (18.60), followed by Italy (12.59), Australia (12.41) and others (Table 8).

S. No.	Country Name	No. of Authors	TP	TC	CPP	HI	%ICP
1	USA	24	422	3908	9.26	5.58	31.52
2	China	19	3410	2496	7.32	5.26	31.38
3	Australia	12	257	3190	12.41	8.25	69.65
4	Italy	6	121	778	6.43	5.0	24.79
5	U.K.	6	99	657	6.64	5.67	60.61
6	South Korea	5	81	545	6.73	5.20	43.21
7	Germany	4	66	504	7.64	5.25	22.73
8	Canada	4	67	658	9.82	5.75	71.64
9	Italy	3	58	730	12.59	7.33	72.41
10	Japan	3	50	172	3.44	4.0	66.0
11	Austria	2	31	369	11.90	6.50	70.97
12	Romania	2	29	191	6.59	4.50	27.59
13	Norway	1	22	70	3.18	4.0	54.55
14	Portugal	1	15	53	3.53	5.0	6.67
15	Macau	1	13	74	5.69	5.0	53.85
16	Netherlands	1	114	82	5.86	5.0	50.0
17	France	1	13	70	5.38	4.0	76.92
18	Switzerland	1	15	61	4.07	4.0	73.33
19	Taiwan	1	13	32	2.46	2.0	46.15
20	Sweden	1	15	279	18.60	10.0	100.0
21	Denmark	1	14	55	3.93	5.0	92.86
22	India	1	14	44	3.14	5.0	0.00

Table 8. Publication and Citation Profile of Top 100 Authors by Country of Origin: 2007-16.

Together these 100 authors accounted for 6.70% (1779 publications) global share and 15.08% (15018) global citation share during 2007-16. On further analysis of these 100 authors, it was observed that:

• Thirty five authors productivity among top 100 authors in big data varied from 60 to 347 publications cumulated in 10 years: A. Cuzzocrea (Italy)(47), R. Ranjan (Australia)(41), J. Chen (Australia)(34), X. Lu (USA) and G. Yu (China)(29 each), A. Y. Zomaya (Australia)(27), X. Zhang (U.K.) and L. T. Yang (China)(25 each), S. Nepal

(Australia)(24), F. Herrera (Spain)(23), etc. Of these 35 authors, 10 were from USA, 7 from China, 5 from Australia, 2 each from Japan, South Korea, Spain and U.K. and 1 each from Canada, Germany, Italy, Norway and Switzerland (Table 9)

- Thirty six (with citation impact ranging from 0.14 to 54.05) amongst 100 authors registered citation impact above group average of 8.44 citations per publication: H. Chen (USA)(54.05), X. Meng (Romania)(20.0), F. Herrera (Spain)(19.52), J. Wan (China)(19.33), C. Yang (Spain)(19.33), A. V. Vasilakos (Sweden)(18.60), C. Liu (Spain)(18.06), T. Rabl (Canada)(17.10), L. Wang(China)(16.52), A. Y. Zomaya (Australia)(16.19), X. Zhang (USA)(15.76), Z. Xu (China)(15.67), V.Markl (Germany)(15.44), R. Ranjan (Australia)(15.32), M. Poess (USA)(15.27), etc. during 2007-16. Of these 36 authors, 10 were from USA, 6 from Australia, 5 from China, 4 from Spain, 3 from U.K., 2 each from Austria and Canada, and 1 each from Germany, Italy, Romania and Sweden.
- Forty five (with ICP ranging from 0.0% to 100.00%) amongst 100 authors accounted for international collaborative publications (ICP) share above the group average (44.86%): A.Y. Zomaya (Australia), A.V. Vasilakos (Sweden), E. Kharlamov (U.K.), I. Horrocks (U.K.) and K. Li (USA)(100% EACH), R. Vatrapu (Denmark)(92.86%), L.T. Yang (China)(92.0%), T. Rabl(Canada)(90.0%) and Q. Jin (Japan)(90.0% each), S. Yu (Australia)(88.89%), J. Ma (Canada)(87.50%), F. Xhafa (Spain)(81.82%), etc. Of the 45 authors, 9 were from Australia, 8 from USA, 4 from China, 3 each from Canada and U.K., 2 each from Austria and Taiwan, and 1 each from France, Italy, Macau, Netherland, Norway, South Korea and Sweden.
- Thirty six (with RCI ranging from 0.04 to 14.41) amongst 100 top authors accounted for relative citation index (RCI) share above the group average (2.25): H. Chen (USA)(14.41), X. Meng (Romania)(5.33), F. Herrera (Spain)(5.21), C. Yang (Australia)(5.16), J. Wan (China)(5.16), A. V. Vasilakos (Sweden)(4.96), C.Liu (Spain)(4.81), T. Rabl (Canada)(4.56), L. Wang (China)(4.41), A.Y. Zomaya (Australia)(4.32), X. Zhang (USA)(4.20), Z. Xu (China)(4.18), V. Markl (Gerany)(4.12), R. Ranjan (Australia)(4.08), M. Poess (USA)(4.07), etc. during 2007-16. Of these 36 authors, 11 were from USA, 4 from Australia, 4 from China, 3 each from Span and U.K., 2 from Austria and Canada, 1 each from Germany, Italy and Romania (Table 10).

S.No	Name of the Author	Affiliation of the Author	ТР	тс	СРР	HI	ICP	%ICP	RCI
1	A. Cuzzocrea	ICAR-CNR University of Calabria, Italy	47	408	8.68	7	23	48.94	2.31
2	R.Ranjan	Commonwealth Scientific & Industrial Organization, Australia	41	628	15.32	15	31	75.61	4.08
3	J.Chen	University of Technology Sydney, Australia	34	473	13.91	12	23	67.65	3.71
4	X.Lu	Ohio State University, USA	29	197	6.79	8	7	24.14	1.81
5	G.Yu	Northeastern University, China	29	108	3.72	5	6	20.69	0.99
6	A.Y.Zomaya	University of Sydney, Australia	27	437	16.19	11	30	111.11	4.32
7	L.T.Yang	Huazhong University of Science & Technology, China	25	173	6.92	7	23	92.00	1.85
8	X.Zhang	University of Manitobo, Canada	25	394	15.76	12	17	68.00	4.20
9	S.Nepal	University of Dereby, U.K.	24	201	8.38	8	7	29.17	2.23
10	L.Wang	Institute of Remote Sensing & Digital Earth, China	23	380	16.52	13	18	78.26	4.4
11	F.Herrera	University of Granada, Spain	23	449	19.52	10	14	60.87	5.21
12	H.Chen	University of Arizona, USA	22	1189	54.05	5	6	27.27	14.4
13	J.Kepner	MIT, USA	22	178	8.09	8	1	4.55	2.10
14	W.Dou	Nanjing University, China	22	136	6.18	9	15	68.18	1.65
15	Y.Chang	Leeds Beckett University, U.K.	22	244	11.09	7	12	54.55	2.9
16	F.Xhafa	Universitat Politecnica de Catalunya, Spain	22	159	7.23	7	18	81.82	1.93
17	C.Rong	University of Stavanger, Norway	22	70	3.18	4	12	54.55	0.8
18	G.B. Giannakis	University of Minnesota, USA	21	168	8.00	7	4	19.05	2.13
19	P.S.Yu	University of Illinois at Chicago, USA	21	55	2.62	4	5	23.81	0.70
20	Z.Xu	Third Research Institute, Ministry of Public Security, China	21	329	15.67	7	2	9.52	4.1

Table 9. Top 20 Most Productive Global Authors in Big Data Research, 2007-16.

S.No	Name of Author	Affiliation of the Author	ТР	тс	CPP	HI	ICP	%ICP	RCI
1	H.Chen	University of Arizona, USA	22	1189	54.05	5	6	27.27	14.41
2	X.Meng	University of Politehnica of Bucharest, Romania	14	280	20.00	5	3	21.43	5.33
3	F.Herrera	University of Granada, Spain	23	449	19.52	10	14	60.87	5.21
4	J.Wan	South China University of Technology, China	15	290	19.33	8	6	40.00	5.16
5	C.Yang	Universitat Politecnica de Catalunya, Spain	15	290	19.33	10	18	120.00	5.16
6	A.V.Vasilakos	Lulea University of Technology, Sweden	15	279	18.60	10	15	100.00	4.96
7	C.Liu	Universitat Politecnica de Catalunya, Spain	18	325	18.06	11	12	66.67	4.81
8	T.Rabl	University of Toronto, Canada	20	342	17.10	7	18	90.00	4.56
9	L.Wang	Institute of Remote Sensing & Digital Earth, China	23	380	16.52	13	18	78.26	4.41
10	A.Y.Zomaya	University of Sydney, Australia	27	437	16.19	11	30	111.11	4.32
11	X.Zhang	Pace University, USA	25	394	15.76	12	17	68.00	4.20
12	Z.Xu	Third Research Institute, Ministry of Public Security, China	21	329	15.67	7	2	9.52	4.18
13	V.Markl	Technical University of Berlin, Germany	16	247	15.44	7	4	25.00	4.12
14	R.Ranjan	Commonwealth Scientific & Industrial Organization, Australia	41	628	15.32	15	31	75.61	4.08
15	M.Poess	Oracle Corporation, USA	15	229	15.27	6	11	73.33	4.07
16	R.Buyya	University of Melbourne, Australia	14	209	14.93	5	7	50.00	3.98
17	M.J. Carey	University of California, Irvine, USA	16	229	14.31	8	2	12.50	3.82
18	J.Chen	University of Technology Sydney, Australia	34	473	13.91	12	23	67.65	3.71
19	S.Dustdar	Vienna University of Technology, Austria	15	189	12.60	5	11	73.33	3.36
20	S.Wang	Renmin University of China	15	177	11.80	5	1	6.67	3.15

Table 10. Relative Citation Index of Top 20 Authors in Big Data Research, 2007-16.

Top 100 authors in big data research post consistent fall in their productivity and their citation impact as their ranking order drops 1 to 100. This data reveals that top 10 organizations lead in publications productivity and citation impact (Figure 5).

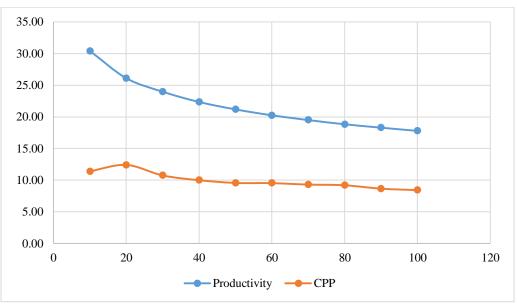


Figure 5. Top 100 Authors in Big Data Research: Quantity vs Quality Performance.

3-9- Medium of Communication in Research

A total of 1603 journals reported 7538 papers in big data research in 10 years during 2007-16, of which 1025 journals contributed 1-5 papers each, 426 journals 6-10 papers each, 109 journals 11-20 papers each, 18 journals 21-30 papers each, 24 journals 31-100 papers each and 1 journal 135 papers. Of the 1603 reporting journals, 25 accounted for 16.61% share of 7538 journal papers, each reporting 31 to 135 papers during the period. The top most productive journal (with 135 papers) was Big Data, followed by International Journal of Applied Engineering Research (83 papers), Jisuanji

Yanjiu Fazhan Computer Research & Development (72 papers), Future Generation Computer Systems (71 papers), IEEE Access (64 papers), etc. (Table 11).

S.No	Name of the Journal	Number of Papers
1	Big Data	135
2	International Journal of Applied Engineering Research	83
3	Jisuanji Yanjiu Fazhan Computer Research & Development	72
4	Future Generation Computer Systems	71
5	IEEE Access	64
6	Journal of Big Data	59
7	Jisuanji Xuebao Chinese Journal of Computers	51
8	Indian Journal of Science & Technology	50
9	Neurocomputing	49
10	Big Data Research	48
11	Journal of Supercomputing	48
12	Concurrency Computation	47
13	Cluster Computing	44
14	IT Professional	43
15	Ruan Jian Xe Bao Journal of Software	43
16	International Journal of Control Theory & Applications	40
17	IEEE Network	36
18	NEC Technical Journal	36
19	International Journal of Distributed Sensor Networks	35
20	Zhongguo Dianji Gongcheng Xuebao Proc. Of the Chinese Society of Electrical Engineering	35
21	International Journal of Software Engineering & its Applications	34
22	IEEE Intelligent Systems	33
23	Nature	33
24	International Journal of Pharmacy & Technology	32
25	IEEE Internet Computing	31
	Total of 25 journals	1252
	Total of the journal world output	7538
	Share of 25 Journals in journal global output	16.61

Table 11. Top 25 Most Productive Journals in Global Big Data Research during 2007-16.

3-10- Highly Cited Papers

Out of 11104 papers in big data research, less than 1 percent (96, 0.86%) received 100 to 100 + citations per paper in 10 years covering the period 2007-16. These 96 highly cited papers together cumulated 21259 citations, with an average of 221.45 citations per paper. Amongst 96 highly cited papers, 64 received 100-200 citations each, 14 received 200-299 citations each, 7 received 300-399 citations each, received 400-599 citations each, and the rest 8 papers were in 520-1098 citation range. These 96 highly cited papers originated from 19 countries. The USA accounted for the highest number of papers (64), followed by China (16 papers), U.K. (11 papers), Canada (6 papers), Australia and Singapore (5 papers each), South Korea (4 papers), Germany, Ireland, Italy and France (3 papers each), Japan and Spain (2 papers), Hong Kong, India, Malaysia, Macau, Netherlands and Turkey (1 papers each).

These 96 highly cited papers involved the participation of 397 authors from 269 organizations. Top organizations which contributed 96 highly cited papers include: University of California, Berkeley, USA, MIT, USA and Nayang Technological University, Singapore (5 papers each), Harvard University, USA (4 papers), University of Cincinnati, OH, USA, Institute of Computing Technology, CAS, China and Tsinghua University, China, University of Toronto, Canada, University of Macau and Imperial College London, U.K. (3 papers each), University of Arizona, USA, Florida Atlantic University, USA. Cornell University, Ithaca, USA, Auburn University, USA, Duke University, USA, University of Southern California, USA, University of Pittsburg, USA, University of Michigan, USA, University of California, San Diego, USA, John Hopkins University, USA, University of Science & Technology of China, China, Microsoft Research Asia, China, University of Melbourne, Australia, University of Wollongong, Australia and University College London, U.K. (2 papers each), etc.

These 96 highly cited papers were published in 60 journals, with 3 papers each in Communications of the ACM, IEEE Access and Nature, 2 papers each in Big Data, Dialogue in Human Geography, Harvard Business Review, IEEE Communication Survey & Tutorials, IEEE Intelligent Systems, IEEE Signal Processing Magazine, IEEE Transactions on Emerging Topics in Computing, International Journal of Production Economics, Journal of Parallel & Distributed Computing and MIT Sloan Management Review, and 1 paper each in 31 other journals.

4- Conclusion

The study provides a comprehensive description and analysis of big data research on a series on bibliometric indicators, covering research publications published across the world in 10-year during 2007-16. Big data research cumulated 26566 publications, and averaged 3.75 citations per paper since publication during the period. In addition, the study reports publication trends in big data research by top countries, top institutions, top authors, top journals, and popular subject areas. The study also characterized analytical outcomes on indicators like average citations per paper, relative citation index, average productivity, and country-level international collaboration share.

The study concludes that big data is a subject of recent origin. Given its major potential to impact business, governance, society, healthcare, industry and many other sectors, big data has emerged as a major discipline. Within a decade big data has witnessed big surge in its research growth to 135.6 %. Top countries like USA, China, India, UK, and Germany have played a prominent role in the growth of big data research even as 61 countries in all had participated and contributed to research in the field during the period. Top countries, top organizations, and top authors, however, differ in terms of qualitative dimensions in big data research measured on relative citation index, citations per paper, and high citations per paper count. Highly cited papers output is limited to less than 1 percent (96, 0.86%) of total big data research output in the world. Besides, highly cited papers output is localized to select few countries like USA and China. USA and China are the global leaders in big data research, whereas other high productivity countries in this field are still distant cousins.

5- References

- [1] Big data in action: definition, value, evolutions, benefits and context. https://www.i-scoop.eu/big-data-action-value-context
- [2] What is Big Data Analytics? https://www.ibm.com/analytics/hadoop/big-data-analytics#324371
- [3] Moorthy, M., Baby, R. & Senthamaraiselvi, S (2014). An Analysis for Big Data and its Technologies. International Journal of Computer Science Engineering and Technology (IJCSET), Vol 4, Issue 12, 412-418.
- [4] Halevi, Gali and Moed, Henk F. (2012). The Evolution of Big Data as a Research and Scientific Topic: Overview of the Literature. Research Trends (Special Issue), 3-6.
- [5] Singh, V.K., Banshal, S.K., Singhal, K. et al. Scientometric mapping of research on 'Big Data'. Scientometrics (2015) 105: 727-741. https://doi.org/10.1007/s11192-015-1729-9.
- [6] Singh, Punit Kumar and Singh, Ajay P. Diffusion of Big Data in Indian Scientific Literature: Study of Research Productivity and Scientific Collaboration. Library Philosophy and Practice (e-journal) (2017).
- [7] Mathisen, B.M., Roman, D., & Wienhofen, L.W. (2015). Empirical Big Data Research: A Systematic Literature Mapping. Information Systems arXiv:1509.03045 [cs.DL]
- [8] Porter, A.L. Hunag, Y, Schuehle, Y and Youtie, Jan. Meta data: Big data research evolving across disciplines, players, and topics. Conference Paper. June 2015 DOI: 10.1109/BigDataCongress.2015.44. ieeexplore.ieee.org
- [9] Mathisen, B.M., Roman, D., & Wienhofen, L.W. (2015). Empirical Big Data Research: A Systematic Literature Mapping. Information Systems arXiv:1509.03045 [cs.DL]
- [10] Kalantari, A., Kamsin, A., Kamaruddin, H.S. et al. (2017). A bibliometric approach to tracking big data research trends. J Big Data (2017) 4: 30. https://doi.org/10.1186/s40537-017-0088-1
- [11] Liao, Huchang, Ming Tang, Li Luo, Chunyang Li, Francisco Chiclana, and Xiao-Jun Zeng. "A Bibliometric Analysis and Visualization of Medical Big Data Research." Sustainability 10, no. 2 (January 11, 2018): 166. doi:10.3390/su10010166.
- [12] Gua, Dongxiao, Lia, Jingjing, Lia, Xingguo, Lianga, Changyong., 2017, Visualizing the knowledge structure and evolution of big data research in healthcare informatics. International Journal of Medical Informatics February 2017, 98, 22-32. https://www.sciencedirect.com/science/article/pii/S1386505616302556
- [13] Youtie, Jan, Porter, Alan L and Huang, Ying. 2017, Early social science research about big data. Science and Public Policy 1 February 2017, 44(1), 65-74. https://doi.org/10.1093/scipol/scw021.