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Abstract 

In the past decades, there have been many groundbreaking discoveries and advancements in the field 

of particle physics. One of the important elementary breakthroughs is the phenomenology of 
neutrino oscillations. This includes the properties of neutrinos in the Standard Model (SM) and how 

neutrino oscillations and their properties have been so important in strengthening the SM. Neutrino 

oscillations also play a vital role in understanding the current nature of our Universe and the way it 
behaves. There is also a great interest in neutrino oscillations and their connection with dark matter. 

In this review, we start with the introduction and discuss the theoretical background of neutrino 

oscillations and some experiments, which are working to detect the properties of neutrinos. Then the 
fundamentals of neutrino oscillations and their interactions were described. Since there are multiple 

sources of neutrinos, we have described the three sectors through which we can expect neutrinos to 

be produced. These are the atmospheric, solar, and reactor sectors. A brief section on the important 
milestones in neutrino oscillations is included because of the experiments and what they use to detect 

neutrino properties. Finally, we also include a section on sterile neutrinos since they have been under 

study for a long time and there is a possibility of them being connected to dark matter interactions. 
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1- Introduction 

Neutrino experiments have shown that neutrinos change flavor as they travel from one point to another. This 

phenomenon and property of neutrinos is commonly known as neutrino oscillations. Earlier, the Standard Model of 

Particle Physics (SM) suggested that neutrinos did not have mass. However, it was seen experimentally that neutrino 

oscillations can only occur if neutrinos have mass [1, 2]. Despite all the understanding, neutrino physics is still far from 

being completely understood. This understanding and discovery of the phenomenon of neutrino oscillations gave us a 

deeper insight into building the SM. The initial concept of neutrino oscillations was suggested by Pontecorvo [3, 4]. 

The first experimental evidence of neutrino oscillations was seen in the atmospheric Super-Kamiokande [5], the solar 

SNO [6] and the reactor KamLAND [7]. These experimental evidences gave us an insight which provided opportunities 

to look beyond SM physics. Despite decades of studies, there are still many questions, which we have not answered. 

Some topics which still need a deeper understanding are, oscillation parameters, neutrino masses, hierarchy, charge-

parity cp-violation in the leptonic sector [8, 9]. Some very challenging questions that are of great interest to theorists and 

experimentalists alike are questions related to cp-violation. The currently accepted neutrino model, known as Mikheyev-

Smirnov-Wolfenstein (MWS) model applies accurately to solar neutrino oscillations in vacuum and in matter 

independently. But, this does not apply to the transition of neutrino oscillations when neutrinos travel from vacuum to 

matter [9]. There is still no consensus on this transition and how it happens. Also, we still do not understand exactly 

what happens exactly in the transition region. Some ideas and theories about this transition are studied in the light of 
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non-standard neutrino interactions, and these theories suggest the existence of a light sterile neutrino. There are other 

suggestions and studies that point to neutrino models beyond SM or new physics scenarios [10]. It is well known that in 

the SM, neutrinos interact with matter through weak interactions. This means that it does not contain the data from the 

QCD aspects [8]. There are various ways this can be approached. Some of these approaches are neutrino oscillation 

probability disappearance and appearance events, long baseline detectors such as LBNL, and measurements of neutrinos 

from various sources such as the sun, nuclear reactors, or the atmosphere [8, 11]. 

The electroweak theory formulated by Glashow, Weinberg and Salam, which was a theory of conserved lepton flavor, 

predicted that neutrinos were massless. This theory suggested that a neutrino of flavor electron (e), tau (𝜏) or muon (𝜇) 

produced in the Charged Current (CC) neutrino interactions resulting in a charged lepton flavor would not change its 

flavor [1]. Many observations have shown that the flavor of neutrinos change into one another while propagating large 

distances. The solar neutrino anomaly [12] and atmospheric neutrino anomaly [13] were two main observations that 

concluded that the lepton flavor violation was also possible. This conclusion was also confirmed by observation the 

flavor violation of man-made neutrinos [10, 13-15] and in long baseline experiments [16, 17]. The conclusions from 

experiments which showed lepton flavor violation made us understand the masses of the neutrinos and the phenomena 

of neutrino mass mixing. According to this mas mixing phenomena, each neutrino flavor is a mixture of various mass 

eigenstates [10, 18]. As neutrinos propagate, each component of the mass eigenstate results in a different phase, thus a 

neutrino of certain flavor will convert to a mixture of different flavors. Hence, the lepton flavor violation takes place 

[10]. In the framework of this mass mixing scheme, the probability of converting from 𝑣𝛼 to 𝑣𝛽 , where 𝛼 and 𝛽 are the 

flavors, in vacuum or in matter is time dependent or we can also say that it is dependent on the distance traveled by 

neutrinos [19-21]. This is the reason that the converting of neutrinos from one flavor to another is generally known as 

neutrino oscillation. Neutrino flavor eigenstates are usually denoted by 𝑣𝛼. Here 𝑣𝛼 is defined as the state which is seen 

in a process which occurs involving a W boson vertex along with a charged lepton. Neutrino mass eigenstates are denoted 

by 𝑣𝑖 with masses 𝑚𝑖 where 𝑖 = 1,2,3. The flavor eigenstates are connected to mass eigenstate by a 3 × 3 matrix, U, 

known as Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix: 

𝑣𝛼 = ∑  𝑖 𝑈𝛼𝑖𝑉𝑖  (1) 

This 3 × 3 matrix U is unitary. The unitary mixing matrix can be written as, 

𝑈 = (

1 0 0
0 𝑐𝑜𝑠𝜃23 𝑠𝑖𝑛𝜃23
0 −𝑠𝑖𝑛𝜃23 𝑐𝑜𝑠𝜃23

)(
𝑐𝑜𝑠𝜃13 0 𝑠𝑖𝑛𝜃13𝑒

−𝑖𝛿

0 1
−𝑠𝑖𝑛𝜃13𝑒

𝑖𝛿 0 𝑐𝑜𝑠𝜃13

)(
𝑐𝑜𝑠𝜃12 𝑠𝑖𝑛𝜃12 0
−𝑠𝑖𝑛𝜃12 𝑐𝑜𝑠𝜃12 0
0 0 1

)  (2) 

where 𝜃𝑖𝑗 are known as the mixing angles and are expected to be in the range of (0,
𝜋

2
) and 𝛿 is known as the phase and 

it has a range of (0,
𝜋

2
) [20]. We know that 𝑣1, 𝑣2, and 𝑣3 have been defined according to their contribution to 𝑣𝑒. They 

can also be written as: 

|𝑈𝑒1| > |𝑈𝑒2| > |𝑈𝑒3|  (3) 

So 𝑣1 has the largest contribution and (𝑣3) provides the smallest contribution to 𝑣𝑒. As mentioned in [19] we know 

that: 

𝜃12, 𝜃13 ≤
𝜋

4
  (4) 

We can say if 𝑣𝑖 is the lightest or the heaviest. Also, we know that: 

𝛥𝑚𝑖𝑗
2 = 𝑚𝑖

2 −𝑚𝑗
2  (5) 

The study in the article [20] explains that the time evolution of ultra- realistic neutrinos is given by the Hamiltonian, 

𝐻 = 𝐻𝑣𝑎𝑐𝑢𝑢𝑚 +𝐻𝑚𝑎𝑡𝑡𝑒𝑟   (6) 

where 𝐻𝑣𝑎𝑐𝑢𝑢𝑚 is the Hamiltonian in vacuum and 𝐻𝑚𝑎𝑡𝑡𝑒𝑟  is the Hamiltonian in matter. The effective Hamiltonian in 

vacuum is given by: 

𝐻𝑣𝑎𝑐𝑢𝑢𝑚 = 𝑈 ⋅ (𝐷𝑖𝑎𝑔[
𝑚1
2

2𝐸
,
𝑚2
2

2𝐸
,
𝑚3
2

2𝐸
]) ⋅ 𝑈†  (7) 

Within the Standard Model (SM) of particle physics, the effective Hamiltonian in matter, 𝐻𝑚𝑎𝑡𝑡𝑒𝑟 , which includes 

the properties of the medium in which neutrinos travel is written as: 
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𝐻𝑚 =

(

 
 
√2𝐺𝐹𝑁𝑒 −

√2

2
𝐺𝐹𝑁𝑛 0 0

0 −
√2

2
𝐺𝐹𝑁𝑛 0

0 0 −
√2

2
𝐺𝐹𝑁𝑛)

 
 

  (8) 

Some assumptions are that the medium is electrically neutral, un-polarized and composed of non-relativistic particles. 

In vacuum, the Hamiltonian is 𝐻𝑚 = 0, and we can write: 

𝑃(𝑣𝛼 → 𝑣𝛽) = |∑ 𝑈𝛼𝑖𝑖𝑗 𝑈𝛽𝑗
∗  𝑒𝑖𝛥𝑚𝑖𝑗

2 𝐿

2𝐸|2  (9) 

Applying trivial matrix algebra techniques using the identity matrix and the Hamiltonian, neutrinos get a phase angle 

[20]. This is why the neutrino oscillation probabilities are dependent mainly on 𝑚𝑖𝑗
2  . Another interesting and challenging 

aspect is CP-violation. CP violation in neutrino sector is defined by the Jarlskog invariant which is given as: 

𝐽 = sin(𝜃13)𝑐𝑜𝑠
2(𝜃13)𝑠𝑖𝑛(𝜃12)𝑐𝑜𝑠(𝜃12)𝑐𝑜𝑠(𝜃23)𝑠𝑖𝑛(𝜃23)𝑠𝑖𝑛(𝛿)  (10) 

The values of the mixing angles 𝜃12 , 𝜃13 and 𝜃23 are obtained from experiments and observations. The mixing angle 

𝜃23 has a value which is close to 45∘ but it is not clear within current understandable uncertainties if we have 𝜃23 < 
𝜋

4
 or 

𝜃23 > 
𝜋

4
. This uncertainty is known as the octant degeneracy. The value of the phase, 𝛿, is unknown, However, 

experimental data suggests a preferred value close to (
3𝜋

2
) [10, 18]. The absolute value of 𝛥𝑚21

2  are determined in the 

study. While |𝛥𝑚31
2 | is measured, the sign of 𝛥𝑚31

2  is not understood completely. If 𝛥𝑚31
2 < 0 the scheme is called 

normal ordering or normal mass spectrum, and if 𝛥𝑚31
2 < 0, the scheme is called inverted ordering or inverted mass 

spectrum [10, 18]. The aim of current and future neutrino oscillation experiments are to determine (cos2𝜃23), (𝛥𝑚31
2 ) 

and the value of the CP-Violating phase 𝛿 [20]. 

There are other neutrino experiments [22] which measure the energy-dependent charged-current cross section of the 

neutrinos for the muon-neutrinos. The neutrino charge current interactions are of extreme importance because they may 

open the window to understanding new physics interactions which have not been observed before. Some studies [23-25] 

and experiments such as MiniBooNE are looking into this search too. Charge current interactions might also give us a 

view on cp-violation understanding. There may be a good possibility of explaining the cp-violation problem through 

these interactions. Other studies involving the charge current interactions in understanding the cross-section of the 

neutrino resulting in other particles are also underway at the MiniBooNE [26-28]. This review consists of two sections 

and is organized as follows. In section 2, the theoretical aspects of neutrino experiments and probability calculations are 

reviewed. The various types of neutrino sectors are further discussed. 

2- Methodology 

The flowchart methodology of this study is available in the Figure 1. 

 

Figure 1. Flowchart of the research methodology 
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3- Neutrino Oscillations 

In the Standard Model (SM) neutrinos are electrically neutral and massless. They only interact with other particles 

via weak interactions, which are described by the Lagrangian [10, 29]: 

ℒ𝑖𝑛𝑡 = −
𝑔

4𝑐𝑜𝑠𝜃𝑊
[V̅𝑒𝛾

𝜇(1 + 𝛾5)𝑣𝑒 − 𝑒̅𝛾
𝜇(1 − 4sin

2𝜃𝑊 + 𝛾5)𝑒]𝑍𝜇

−
𝑔

2√2
V̅𝑒𝛾

𝜇(1 + 𝛾5)𝑒𝑊𝜇
+ −

𝑔

2√2
𝑒̅𝛾𝜇(1 + 𝛾5)𝑣𝑒𝑊𝜇

−
  (11) 

Charged current interaction Lagrangian contribution to neutrino potential in matter [10]: 

ℒ𝐶𝐶 = −
𝑔

2√2
𝑗𝑝
𝐶𝐶𝑊𝑝 + ℎ. 𝑐.     (12) 

Neutral Current interaction Lagrangian contribution to neutrino potential in matter: 

ℒ𝑁𝐶 = −
𝑔

2𝑐𝑜𝑠𝜃𝑊
𝑗𝑝
𝑁𝐶𝑍𝑝     (13) 

In the above relation, g is the 𝑆𝑈(2)𝐿 gauge coupling constant, 𝜃𝑊 is the weak angle, and the charged and neutral 

currents 𝑗𝑝
𝐶𝐶  and 𝑗𝑝

𝑁𝐶  are given by; 

𝑗𝑝
𝐶𝐶 = 2∑ 𝑉𝑙𝐿𝑌𝑝𝑙𝐿𝑙=𝜖,𝜇,𝜏 +. . .     (14) 

𝑗𝑝
𝑁𝐶 = ∑ 𝑉𝑙𝐿𝑌𝑝𝑉𝑙𝐿𝑙=𝜖,𝜇,𝜏 +. . .  (15) 

where l are the charged lepton fields and we have written only the terms containing the neutrino fields 𝑣𝑙 . If neutrinos 

have non-zero masses, the left handed components 𝑉𝛼𝐿 of the neutrinos with the flavor 𝛼 can also be expressed as a 

superposition if left handed states 𝑉𝑙𝐿  of the neutrinos with masses given by 𝑚𝑖. Assuming that neutrinos are ultra-

relativistic, we have 

𝑉𝛼𝐿 = ∑ 𝑈𝛼𝑖𝑉𝑖𝐿
𝑁
𝑖=1   (16) 

where U is the unitary matrix defined earlier. If we consider a field operator which is used for creation and annihilation 

of particles and anti-particles, it implies that a flavor eigenstate |𝑣𝛼| is a superposition of the different mass eigenstates 

|𝑣𝑖|, according to [10, 18]: 

|𝑉𝛼| = ∑ 𝑈𝛼𝑖
∗𝑁

𝑖= |𝑉𝑖|     (17) 

3-1- The Solar Neutrino Sector: (𝒔𝒊𝒏𝟐𝜽𝟏𝟐, 𝜟𝒎𝟐𝟏
𝟐 ) 

The solar neutrino sector is the most important sector for all traditional solar neutrino experiments. The other 

important experiment is the reactor KamLAND experiment. These experiments are very sensitive in detecting the 

neutrino oscillations, which follows the dynamics of CPT-conservation. There are multiple experiments which detect 

and analyze data from solar neutrino. Some of these experiments are, Homestake [30], Gallex/GNO [31], SAGE [32]. 

These experiments are extremely sensitive to the rate of electron neutrinos which undergo interactions, but less sensitive 

to the energy or time of arrival of solar neutrinos at the detector. The neutrino experiment Kamiokande [33]. Results 

from Kamiokande also pointed in the direction that there is a solar neutrino deficit which was observed by the previous 

experiments. Its upgraded version Super-Kamiokande, which is about 10 times larger and more sensitive, has provided 

us with accurate results through observations in the last 20 years of operation. The interactions of the solar neutrinos 

with other particles and medium are detected through multiple scattering experiments but the elastic neutrino-electron 

scattering is studied often. 

The elastic neutrino-electron scattering is sensitive to all neutrino flavors, in which the cross section for 𝑣𝜖 is large 

due to the effects of the charged-current neutrino-electron interaction. The correlation between the the recoil electron 

and the incident neutrino in the elastic scattering gives the informational details and the physics of the incoming neutrino 

in terms of its energy and the direction of arrival. Super-Kamiokande was very successful in its first three solar phases 

[34, 35]. Now, Super-Kamiokande is already in its fourth phase, where a very low energy detection threshold of 3.5 

MeV has been achieved. In this period, Super-Kamiokande has already indicated that the effects of matter of the Earth 

has a big role in the physics of neutrino oscillations and solar neutrinos. The statistical result analyzed is of the order of 

3𝜎 [1, 2]. 
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3-2- The Atmospheric Neutrino Sector: (𝒔𝒊𝒏𝟐𝜽𝟐𝟑𝜟𝒎𝟑𝟏
𝟐 ) 

The atmospheric neutrino is mostly generated in nucleon-decay experiments. The studies including atmospheric 

neutrino flux was measured in [1, 2]. In the earlier studies the experiments observed that there is a shortage of the number 

of atmospheric neutrinos than what was predicted in theory or models [36]. Later, the explanation came as an indication 

for the evidence of neutrino oscillations. This was seen in the observation of the zenith angle dependence for the muon-

like neutrinos at Super-Kamiokande. Another aspect which was detected at the Super-Kamiokande was the dependence 

of the 𝐿/𝐸 distribution of the data which is a characteristic of neutrino oscillations [37]. Currently, Super-Kamiokande 

is in its fourth stage of advancement. This experiment is capable of measuring atmospheric neutrino flux in the 100MeV 

to 1TeV range. At the Super-Kamiokande the neutrino events which are observed are basically as the following types: 

 Fully Contained; 

 Partially Contained; 

 Upward going. 

These three classifications depend on the topology of the detected event. 

3-3- The Reactor Neutrino Sector 

Since neutrinos are relatively hard to detect, we can use reactors to find them. These reactors can produce enormous 

amounts of reactor neutrinos since they come in only one flavor called electron antineutrinos. These experiments can 

position their detectors at a range of many distances. This variety gives scientists plenty of time to observe and record 

how neutrinos can change properties. During this process, neutrinos undergo negative beta decay which happens inside 

the nucleus. This is when an unstable fission fragments along with an abundant amount of neutrons convert into protons, 

electrons, and antineutrinos. These neutrino oscillations experiments have measured antineutrino distribution that is the 

sum of antineutrino spectral shapes of all beta decays. Also antineutrino detection via reactor could also help remotely 

monitor the reactor itself, as they can provide real-time information within the reactor without being present in them [9, 

18].  

4- Important Milestones in Neutrino Oscillations 

The results obtained from experiments related to the neutrino oscillations have been very successful, of various types 

and from various sources. These sources are solar and atmospheric neutrinos, reactor anti-neutrinos, neutrinos and anti-

neutrinos from accelerator beams. The neutrino experiments make use of a variety of techniques, some of which are 

[32]: 

 Radiochemical Methods; 

 Water And Heavy Water Cherenkov Detectors; 

 Liquid Scintillators; 

 Plastic Scintillators; 

 Streamer Chamber Detectors; 

 Time Projection Chamber Detectors; 

 Nuclear Emulsion detectors. 

The principle results from this review paper are displayed in Figures 2 and 3. The experiments can be differentiated 

and explained as disappearance of a certain flavor and appearance of a certain flavor events [31-33]: 

 The first results show how to measure flux of neutrinos having the same flavor as that produced at the source 

 The second look for neutrinos of various flavors with respect to those emitted by the source. 
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Figure 2. Electron Neutrino survival probability at Earth detection for neutrinos produced in a solar plasma with matter 

potential [38] 

 

Figure 3. Muon neutrino survival probability at a distance of 735km as a function of the neutrino energy, for different 

values of the sterile neutrino mass splitting and oscillation angle [39] 

The experiments studying the atmospheric neutrinos at Kamiokande, Super-Kamiokande and the solar neutrinos at 

SNO, all give superb evidence and provide excellent studies for neutrino oscillations. From Super-Kamiokande results, 

the atmospheric neutrino measurements have been extremely positive. 

5- Sterile Neutrinos 

There is a possibility that more than three light neutrino species participate in neutrino oscillations [40]. A deficit of 

atmospheric muon neutrinos was first observed by the Kamiokande experiment [35, 41] and IMB [42, 43] experiments. 

It has been widely discussed that this could be because of the possibility of oscillations of muon neutrinos into sterile 

neutrinos. The oscillations of active neutrinos into sterile neutrinos have also been widely studied as a possible 

explanation of the solar neutrino problem [46-49]. Even though there have been several explanations, there are still many 

neutrino oscillation anomalies which cannot be explained in the standard three flavor framework. The understanding of 

this anomaly requires more experiments, which have a higher sensitivity to detect sterile neutrinos or their interactions 

[50]. 
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Among the many experimental setups which aim to look for evidences for sterile neutrinos, one such experiment is 

the Liquid Scintillator Neutrino Detector (LSND) [51]. The Liquid Scintillator Neutrino Detector (LSND) was designed 

to detect neutrinos originating in a proton tar- get and beam stop at the Los Alamos Meson Physics Facility (LAMPF). 

The primary goal was to search for transitions from muon-type to electron-type neutrinos in two complementary ways. 

The experimental setup is shown in Figure 4. Sterile neutrinos came into theory when new studies started to look deeply 

into the formulation and detection of dark matter. Sterile neutrinos completely differ from the neutrinos in the Standard 

Model. They do not interact with regular matter as neutrinos do and hence it makes it very difficult to detect or even 

look for any channel through which it interacts. Lawrence Livermore National Laboratory (LLNL) and Colorado School 

of Mines have been working towards the study of sterile neutrinos. 

 

Figure 4. Detector enclosure and target area configuration, elevation view 

5-1- Fundamentals of Sterile Neutrino Phenomenology 

The phenomenology and the formalism of the neutrinos is the Standard Model is similar if we talk about 3-flavors of 

neutrinos or extend it to more flavors. There are other studies related to this phenomenology [52, 53]. The weak 

interaction Lagrangian in the flavor basis [40] can be written as, 

𝑛𝑒𝑢ℒ = ∑ [
𝑔

√2
(𝜈𝛼 , 𝐿̅̅ ̅̅ ̅̅ 𝛾𝜇𝜈𝛼,𝐿𝑊𝜇

+ + ℎ. 𝑐. ) +
𝑔

√2 cos(𝜃𝜔)
(𝜈𝛼 , 𝐿̅̅ ̅̅ ̅̅ 𝛾𝜇𝜈𝛼,𝐿𝑍𝜇)]𝛼=𝑒,𝜇,𝜏   (18) 

In the mass basis we can write the neutrino flavors as, 

𝜈𝛼 = ∑ 𝑈𝛼𝑖
𝑛+3
𝑖=1 𝜈𝑖  (19) 

where the summation goes to 𝑛 + 3 states considering there bare more than 3 neutrino flavors. 𝑈𝛼𝑖 is known as the 

mixing matrix which gives the transformation from the flavor eigenstates to the mass eigenstates. Quantum field theory, 

just like quantum mechanics makes use of creation operators. This creation operator is also applied in neutrino states. 

When a neutrino creation operator is applied on vacuum, it gives rise to a neutrino flavor state which is also known as 

the initial state of the neutrino flavor. This flavor state can also be connected to the mass eigenstates using the neutrino 

mixing matrix and is given by, 

|𝜈𝛼⟩ = ∑ 𝑈𝛼𝑖
∗𝑛+3

𝑖=1 |𝜈𝑖⟩  (20) 

where 𝑈∗ is the complex conjugate of U. Using the time evolution phenomenon, we can write Equation 19 as, 

|𝜈𝛼(𝑡, 𝑥)⟩ = ∑ exp𝑛+3
𝑖=1 (−𝑖𝐸𝑖𝑡 + 𝑖𝑝𝑖𝑥)𝑈𝛼𝑖

∗ |𝜈𝑖⟩      (21) 

where 𝐸𝑖 and 𝑝𝑖  are the energy and momentum of the i-th mass eigenstate. Since we know that neutrinos oscillate between 

flavors while travelling long distances. These oscillations occur regularly and have a certain probability which can be 

given as, 

𝑃𝛼𝛽 ≡ ⟨𝜈𝛼|𝜈𝛽(𝑡, 𝑥)⟩ = ∑ 𝑈𝛼𝑖
∗

𝑖,𝑗 𝑈𝛽𝑖𝑈𝛼𝑗𝑈𝛽𝑗
∗ exp(−𝑖[𝐸𝑖 − 𝐸𝑗]𝑡)exp(𝑖[𝑝𝑖 − 𝑝𝑗]𝑥)      (22) 

where the indices 𝑖, 𝑗 go from 1 to 3+n. There are multiple experiments which are currently working towards searching 

for the elusive sterile neutrino and some of those experiments have been mentioned in the previous sections. These 
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various experiments apply a variety of techniques to detect sterile neutrinos. Some aspects of sterile neutrino detection 

are appearance searches and disappearance searches. These techniques are out of scope of this review. 

6- Conclusion 

The calculated probability of an electron neutrino and muon neutrino's survival was calculated based on the best-fit 

parameters for the electron and muon neutrinos. The probability of survival varies based on the time of day and also the 

distance of the neutrinos. The mass eigenvalues and the splitting angle values also play a pivotal role in those 

calculations. Currently, there are still many open problems that theorists and experiments are trying to solve. Some of 

them deal with sterile neutrinos, dark matter, and the connection of dark matter with neutrino oscillations. There are 

various experiments that are trying to understand the interactions related to neutrino oscillations, sterile neutrinos, and 

dark matter. There are also studies underway to understand if neutrinos are Dirac particles or Majorana particles. 

The neutrino oscillations that are discussed here are connected to the probability of the oscillation of a certain flavor 

to another flavor. These results and predictions are for the three flavor oscillations in vacuum and in matter. Currently, 

neutrino oscillations are the subject of active research because these oscillations can give us an insight into understanding 

the Universe in its fundamental form. This can also lead us towards understanding dark matter and how dark matter 

shapes the universe at a larger scale. The experiments which are working towards understanding and detecting neutrinos 

are also looking for interactions which can give a deeper understanding of how neutrino properties can be used in 

strengthening the Standard Model of Particle Physics and look for scenarios beyond the Standard Model. 

The future work is related to focusing on the current phenomenology of neutrinos and their connection to dark matter. 

There are various scenarios which have promising aspects of dark matter detection and multiple ways of understanding 

neutrino oscillations and dark matter. These aspects of neutrinos are part of our future work. 
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