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Abstract 

Climate change causes the spread of non-vector diseases due to the influence of climate 
uncertainty. The elderly group, which is vulnerable, is affected by such disasters. Therefore, the 

objectives of this study were to forecast epidemic peaks of food poisoning, which was found as 

one of the re-emerging diseases in elderly people in Khon Kaen Province, Maha Sarakham 
Province, and Roi Et Province, which are in the Northeastern region of Thailand by using 2 types 

of Grey Model: GM(1,1) and Discrete Grey Model (DGM). The monthly rate of food poisoning 

incidence per 100,000 elderly people from January 2017 to December 2020 i.e., 48 months in total 
were used in the study. The study result revealed that the DGM had higher forecasting 

effectiveness than that of the GM(1,1) in all three provinces. The food poisoning incidences in 

elderly people were forecasted to re-emerge from August to September 2021 in Khon Kaen 
Province, from August to September 2022 in Maha Sarakham Province, and from May to June 

2022 in Roi Et Province. The results of this study are useful and helpful for the government, the 

Ministry of Public Health and related cooperatives to effectively help services planning resource 
preparation and prevention measures. 
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1- Introduction 

Climate change causes seasonal infectious diseases due to the influence of climate uncertainty such as temperature 

and humidity as parts of climate variation. Moreover, the spread of non-vector diseases such as diarrhea and food 

poisoning is sometimes affected by climate change. The population structure of Thailand has changed into an aging 

society. In 2020, the northeastern region contained the largest number of elderly people. According to the Ministry of 

Social Development and Human Security, the number of elderly people at the age of 60 years upward in the next 20 

years is estimated to increase up to 30%. 

The forecasting of diseases and health threats is very important because the forecasting results allow surveillance on 

epidemiological diseases for the benefits of resource planning, and disease prevention and treatments in an effective 

way. Ju-Long (1982, 1989) [1-2] presents the Grey Model or GM(1,1) by basing the study principles on discrete data, 

uncertainty data distribution, and the limited number of data. The theory of GM(1,1) is widely used. In addition, Xie and 

Liu (2008) [3] develop the Discrete Grey Model (DGM) from the effective improvement of the GM(1,1). The models 
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are widely used in medicines [4–9], and other areas such as petroleum, geological engineering, industry, management, 

marketing, and agriculture [10–23]. In medicines and public health, the spread of diseases is affected by several uncertain 

factors, so the Grey theory with dynamic changes is suitable to be used. The GM(1,1) is popularly used in forecasting 

diseases and death rates from epidemics. As a result, this research studied the epidemic peaks of food poisoning of 

elderly people in Khon Kaen Province, Maha Sarakham Province, and Roi Et Province (Thailand) since those provinces 

were almost in the top ranks of elderly people with food poisoning in the middle northeastern region. The analyses with 

GM(1,1) and DGM are useful for planning resources and preventing the diseases effectively. 

2- Data Preparation and Methodology 

2-1- Data 

The data in this research were the monthly rate of food poisoning incidence per 100,000 elderly people from January 

2017 – December 2020 i.e., 48 months in total in Khon Kaen Province, Maha Sarakham Province, and Roi Et Province. 

2-2- GM(1,1) 

GM(1,1) is the model of the Grey theory of prediction with one variable .The first order Grey model is created with 

a few data (four or more ) . Its procedure is as follows: 

 The existing data with the 𝑛 sample units are represented in (0) (0) (0) (0)( (1), (2), ..., ( )),X x x x n where 
(0)X  

is the series of data . 

 Calculate the cumulative sum of the existing data 
(0)X  in the form of a cumulative sum series. 

 
1 2

(1) (1) (1) (1) (0) (0) (0)

1 1 1

(1), (2), ..., ( ) ( ), ( ), ..., ( )

n

i i i

X x x x n x i x i x i

  

 
   

 
 
   .                  (1) 

 Calculate 
(1)Z , the means from (1) as:  

 (1) (1) (1) (1)(2), (3),..., ( ) ,Z z z z n                        (2) 

where
(1) (1) (1)( ) 0.5 ( ) 0.5 ( 1) ; 2,3,...,   z k x k x k k n . 

 Calculate for the differential equation of GM(1,1) with 
(1)

(1)dx
ax b

dt
   . 

The resulting derivative of a function is 
(0) (1)( ) ( )x k az k b   where a  and b  are the parameters of GM(1,1). 

That is,   1( )
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 The forecasting equation can be calculated by;  

(1) (0)ˆ ( 1) (1) akb b
x k x e

a a

 
    

 
 .                                 (4) 

And the new equation is adjusted as follows: 

 
(0) (1) (1) (0)ˆ ˆ ˆ( 1) ( 1) ( ) (1 ) (1)a akb

x k x k x k e x e
a

 
       

 
.                     (5) 

It is called the time response equation. 

2-3-Discrete Grey Model (DGM)  

The DGM procedure is as follows: 

 The equation 
(1) (1)

1 2( 1) ( )x k x k                                      (6) 
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It is called the Discrete Grey Model (DGM). 

 1 2
ˆ ( )T    is the series of parameters where 
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The least square method is used to estimate the parameters in the equation: 
 

(1) (1)
1 2

ˆ ( 1) ( )x k x k    ,                       (7) 

where
1ˆ ( )T TB B B Y  .       

 Let 
(1) (0)(1) (1),x x  then the recursive function is used with the following setting:    

(1) (0) 1
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or 
(1) (0) 2 2

1
1 1

ˆ ( 1) (1) ,
1 1

kx k x
 


 

 
    

  
                     (9) 

where 1,2,..., 1k n  . 

Then restore the value of 
(0)ˆ ( )x k , and the forecasting equation of DGM is obtained as follows:   

(0) (1) (1) (1) (1)ˆ ˆ ˆ ˆ( 1) ( 1) ( 1) ( )x k x k x k x k      ,               (10) 

where 1,2,..., 1k n  .          

2-4- Model Accuracy Test 

The model accuracy tests are as follows; 

 Mean Relative Error  
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  .                    (11) 

For the given  , when    and n     are true, the forecasting model is regarded as satisfied. 

 Absolute Degree of Incidence;  
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Let   as the absolute value of the incidence level among raw data of 
(0)X  and the simulated values for determining

0 0   .If the absolute value of the incidence level is in accordance with 0  , the forecasting model is regarded as 

satisfied.  
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For determining 0 0C  , if the variance ratio is 2 1 0/ ,C S S C  the forecasting model is considered as satisfied. 
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 Small Error Probability 

If   1( 0.6745p P k S     is calculated for probability of small errors and for determining 𝑝0 > 0 ;where𝑝 > 𝑝0, 

the forecasting model is regarded as satisfied. 

The used scale for testing the model accuracy is illustrated in Table 1. 

Table 1. Scales of accuracy for model testing. 

Accuracy scale 
Mean relative error 

() 

Degree of incidence 

() 

Variance ratio 

(c) 

Small error probability 

(p) 

1st level 0.01  0.90  0.35  0.95  

2nd level 0.01 - 0.05  0.80 - 0.90  0.35 - 0.50  0.80 - 0.95  

3rd level 0.05 - 0.10  0.70 - 0.80  0.50 - 0.65  0.70 - 0.80  

4th level 0.10 - 0.20  0.60 - 0.70  0.65 - 0.80  0.60 - 0.70  

Figure 1 shows the procedure for processing this research. 

  

Figure 1. Flowchart of the research methodology. 

3- Results and Discussion 

Table 2 shows the monthly rate of food poisoning incidence per 100,000 elderly people from January 2017– December 

2020 in Khon Kaen Province, Maha Sarakham Province, and Roi Et Province. The data at 4 epidemic peaks were 

selected for the analyses with GM(1,1) and DGM as shown in Figures 2 to 4.  
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Table 2. The monthly rate of food poisoning incidence per 100,000 elderly people from January 2017 – December 2020. 

month-year Time series value 1w  2w  3w  month-year Time series value 1w  2w  3w  

Jan-17 1 88.73 73.39 106.21 Jan-19 25 99.45 42.64 91.46 

Feb-17 2 69.25 43.88 88.35 Feb-19 26 76.43 44.03 59.79 

Mar-17 3 89.78 55.23 96.07 Mar-19 27 74.76 41.24 89.23 

Apr-17 4 81.78 76.42 89.80 Apr-19 28 76.09 46.13 78.08 

May-17 5 85.60 77.18 91.25 May-19 29 82.43 47.53 98.16 

Jun-17 6 82.47 75.66 98.01 Jun-19 30 87.44 46.13 109.31 

Jul-17 7 73.42 89.28 94.63 Jul-19 31 94.45 69.20 116.45 

Aug-17 8 61.24 72.64 93.66 Aug-19 32 86.77 60.81 79.86 

Sep-17 9 68.55 75.66 113.46 Sep-19 33 98.79 53.12 99.50 

Oct-17 10 62.64 44.64 85.94 Oct-19 34 72.75 52.42 94.14 

Nov-17 11 52.89 46.91 75.32 Nov-19 35 65.41 29.36 58.00 

Dec-17 12 86.30 61.29 68.56 Dec-19 36 69.08 34.25 63.80 

Jan-18 13 85.32 63.39 91.06 Jan-20 37 72.07 43.66 75.65 

Feb-18 14 86.77 71.40 80.37 Feb-20 38 60.73 26.19 66.19 

Mar-18 15 90.11 49.55 72.47 Mar-20 39 65.94 26.19 64.47 

Apr-18 16 97.78 63.39 85.02 Apr-20 40 49.38 22.84 42.98 

May-18 17 87.10 68.49 102.67 May-20 41 55.21 23.51 68.34 

Jun-18 18 85.77 59.75 100.81 Jun-20 42 66.25 36.94 86.82 

Jul-18 19 73.09 74.32 89.20 Jul-20 43 74.22 42.31 88.54 

Aug-18 20 74.42 66.30 107.78 Aug-20 44 69.01 52.39 118.63 

Sep-18 21 76.09 67.76 101.74 Sep-20 45 61.65 53.06 110.03 

Oct-18 22 65.75 58.29 71.08 Oct-20 46 38.34 24.18 71.78 

Nov-18 23 64.08 51.00 68.29 Nov-20 47 35.88 27.54 58.45 

Dec-18 24 83.43 50.27 72.94 Dec-20 48 29.75 33.58 52.01 

Note: 𝑤1is the rate of food poisoning incidence per 100,000 elderly people in Khon Kaen Province. 𝑤2 is the rate of food poisoning 

incidence per 100,000 elderly people in Maha Sarakham Province. 𝑤13 is the rate of food poisoning incidence per 100,000 elderly 

people in Roi Et Province. 

 
Figure 2. The rate of food poisoning incidence per 100,000 elderly people in Khon Kaen Province at 4 epidemic peaks 

selected for the model analyses. 
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Figure 3. The rate of food poisoning incidence per 100,000 elderly people in Maha Sarakham Province at 4 epidemic peaks 

selected for the model analyses. 

 

Figure 4. The rate of food poisoning incidence per 100,000 elderly people in Roi Et Province at 4 epidemic peaks selected for 

the model analyses. 

Figures 2 to 4 illustrate the rate of food poisoning incidence per 100,000 elderly people at 4 selected epidemic peaks .

The data used were in: April 2018, January 2019, September 2019, and July 2020 in Khon Kaen Province; in July 2017, 

July 2018, July 2019, and September 2020 in Maha Sarakham Province; and in September 2017, August 2018, July 

2019, and August 2020 in Roi Et Province. These data were analyzed to obtain the forecasting models of GM(1,1) and 

DGM in each province, and the results are shown in Table 3 .The values of forecasting and relative errors of GM(1,1) 

and DGM in each province are shown in Table 4, whereas the results from the model accuracy testing of GM(1,1 ) and 

DGM in each province are shown in Table 5. 

Table 3. Forecasting model of GM(1,1) and DGM. 

Province (0)X  GM(1,1) DGM 

Khon Kaen  (0) 16 25 33 43X   0.2683(0) 80ˆ 1 19. 52 8( 8) kx k e   
(0)ˆ ( 1)x k    125.09098 1.30996k  

Maha Sarakham  (0) 7 19 31 45X   0.4090(0) 89ˆ 1 12. 51 7( 6) kx k e   
(0)ˆ ( 1)x k    119.85976 1.51334k  

Roi Et  (0) 9 20 31 44X   0.3783(0) 99ˆ 1 13. 20 4( 7) kx k e   
(0)ˆ ( 1)x k    119.85976 1.46618k  
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Table 4. The values of forecasting and relative errors of GM(1,1) and DGM. 

Province (0)X  
Original 

(month) 

GM(1,1) DGM 

Forecast (month) Relative errors Forecast (month) Relative errors 

Khon Kaen 

(0)(1)x  16 - - - - 

(0)(2)x  25 24.91817 0.00327 25.09098 0.00364 

(0) (3)x  33 32.58905 0.01245 32.86830 0.00399 

(0)(4)x  43 42.62135 0.00881 43.05630 0.00131 

Maha Sarakham 

 

(0)(1)x  7 - - - - 

(0)(2)x  19 19.49778 0.02620 19.85976 0.04525 

(0) (3)x  31 29.35246 0.05315 30.05464 0.03050 

(0)(4)x  45 44.18795 0.01805 45.48301 0.01073 

Roi Et 

(0)(1)x  9 - - - - 

(0)(2)x  20 20.32337 0.01617 20.63377 0.03169 

(0) (3)x  31 29.67080 0.04288 30.25280 0.02410 

(0)(4)x  44 43.31744 0.01551 44.35600 0.00809 

Table 5. The model accuracy testing of GM(1,1) and DGM. 

Province Model 
Mean relative error 

() 

Degree of incidence 

() 

Variance ratio 

(c) 

Small error probability 

(p) 

Khon Kaen 

GM(1,1) 
0.00818 
(level st1) 

0.84909 
(level nd2) 

0.01804 
(level st1) 

1 
(level st1) 

DGM 
0.00298 

(level st1) 

0.99985 

(level st1) 

0.00851 

(level st1) 

1 

(level st1) 

The best model is DGM. 

   
0

56.40223ˆ 5x  

Maha Sarakham 

GM(1,1) 
0.00032 
(level st1) 

0.96670 
(level st1) 

0.05784 
(level st1) 

1 
(level st1 

DGM 
0.00029 
(level st1) 

0.99735 
(level st1) 

0.04793 
(level st1) 

1 
(level st1) 

The best model is DGM. 

   
0

68.83143ˆ 5x  

Roi Et 

GM(1,1) 
0.00025 
(level st1) 

0.99061 
(level st1) 

0.04910 
(level st1) 

1 
(level st1) 

DGM 
0.00021 
(level st1) 

0.99824 
(level st1) 

0.03988 
(level st1) 

1 
(level st1) 

The best model is DGM. 

   
0

65.03383ˆ 5x  

In this study, the incidence rate of food poisoning of elderly people was conducted in Khon Kaen Province, Maha 

Sarakham Province and Roi Et Province which are located in the Northeastern region of Thailand. It was found that the 

4 epidemic peaks of food poisoning incidence rate of elderly people in Maha Sarakham Province and Roi Et Province 

occurred from July to September, which is during the rainy season. In Khon Kaen Province, 4 epidemic peaks of food 

poisoning incidence rate of elderly people occurred in April 2018, January 2019, September 2019, and July 2020. It is 

shown that the first epidemic peak occurred during the summer season and tends to occur during the rainy season. The 

rainy season of Thailand is tropical and the pathogens may be growing as well. If people are not careful when eating, it 

may result in gastrointestinal diseases such as food poisoning, especially in the elderly people with low immunity, it can 

lead to death. In this research, the GM(1,1) model and the DGM model were used to construct the grey disaster model. 

The simulation results showed that the DGM model had a better performance. Then, the DGM model was chosen to 

make the prediction, which is corresponding to Shen et al. [5].  

4- Conclusion  

Grey disaster prediction, the GM(1,1) and DGM, is important to predict the time of abnormal values, and propose 

the forecast of the exact times of forthcoming disasters to prepare ahead of time for the worst situation. In this study, the 

GM(1,1) and DGM were used for forecasting the epidemic peaks of food poisoning incidence in the elderly people in 

Khon Kaen Province, Maha Sarakham Province, and Roi Et Province in Thailand .The study found that the DGM had 
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higher forecasting effectiveness than that of the GM(1,1) in all three provinces .When the DGM is used in forecasting, 

the forecasting value in Khon Kaen Province was found at �̂�(0)(5) = 56.40223, meaning that food poisoning incidence 

would re-emerge in elderly people from August to September 2021 and the mean relative error of the DGM model is 

0.298% . In Maha Sarakham Province, the forecasting value was found at �̂�(0)(5) = 68.83143, meaning that food 

poisoning incidence would re-emerge in elderly people from August to September 2022 and the mean relative error of 

the DGM model is 0.029%. In addition, the forecasting value in Roi Et Province was found at �̂�(0)(5) = 65.03383, 

meaning that food poisoning incidence would re-emerge in elderly people from May to June 2022 and the mean relative 

error of the DGM model is 0.021%. Although the forecasting with Grey theory is highly effective and has yielded good 

results, it may not be appropriate for all situations. Moreover, the forecasting with Grey theory is more accurate in the 

short term but its accuracy in long-term forecasting may decrease [24]. Therefore, we should consider and analyze the 

actual situation and select a suitable model and adapt it to the situation of the disease. This makes it possible to take full 

advantage of forecasting models to maximize long-term benefits. 
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